首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphorylation of mPer proteins may play important roles in the mechanism of the circadian clock via changes in subcellular localization and degradation. However, the mechanism has remained unclear. Previously, we identified three putative casein kinase (CK)1epsilon phosphorylation motif clusters in mPer1. In this work, we examined the role of the phosphorylation of serine residue, Ser(S)714, in mPer1. mPer1 S[714-726]A mutant, in which potential phosphorylation serine residues replaced by alanine residues, is rapidly phosphorylated compared with wild-type mPer1 by CK1epsilon. Coexpression with S[714]G mutant of mPer1 advanced phase of circadian expression of mPer2-luc expression, which was monitored by in vitro bioluminescence system. This result showed that the mPER1 S[714]G mutation affects circadian core oscillator. Considering these, it seems that Ser 714 might be involved in the regulation of the phosphorylation of other sites in mPer1 by CK1epsilon.  相似文献   

2.
3.
Takano A  Shimizu K  Kani S  Buijs RM  Okada M  Nagai K 《FEBS letters》2000,477(1-2):106-112
Genes differentially expressed in the subjective day and night in the rat suprachiasmatic nucleus (SCN) were surveyed by differential display. A gene homologous to human casein kinase 1epsilon (CK1epsilon) was isolated, which initially appeared to be expressed in the suprachiasmatic nucleus (SCN) in a circadian manner. We here describe the cDNA cloning of the rat CK1epsilon and characterization of the protein products. The rCK1epsilon is predominantly expressed in the brain including the SCN, binds and phosphorylates mPer1, mPer2, and mPer3 in vitro, and translocates mPer1 and mPer3, but not mPer2, to the cell nucleus depending on its kinase activity when coexpressed with these Per proteins in COS-7 cells.  相似文献   

4.
MPer1 and mper2 are essential for normal resetting of the circadian clock   总被引:8,自引:0,他引:8  
Mammalian Per1 and Per2 genes are involved in the mechanism of the circadian clock and are inducible by light. A light pulse can evoke a change in the onset of wheel-running activity in mice by shifting the onset of activity to earlier times (phase advance) or later times (phase delays) thereby advancing or delaying the clock (clock resetting). To assess the role of mouse Per (mPer) genes in circadian clock resetting, mice carrying mutant mPer1 or mPer2 genes were tested for responses to a light pulse at ZT 14 and ZT 22, respectively. The authors found that mPer1 mutants did not advance and mPer2 mutants did not delay the clock. They conclude that the mammalian Per genes are not only light-responsive components of the circadian oscillator but also are involved in resetting of the circadian clock.  相似文献   

5.
6.
7.
The mammalian circadian clock component PERIOD2 (PER2) plays a critical role in circadian rhythm entrainment. Recently, a missense mutation at a putative phosphorylation site in hPER2, Ser-662, was identified in patients that suffer from familial advanced sleep phase syndrome (FASPS). Patients with FASPS display abnormal sleep-wake patterns characterized by a lifelong pattern of sleep onset in the early evening and offset in the early morning. Although the phosphorylation of PER2 is strongly implied from functional studies, it has not been possible to study the site-specific phosphorylation of PER2 on Ser-662, and the biochemical functions of this residue are unclear. Here, we used phospho-specific antibodies to show that PER2 is phosphorylated on Ser-662 and flanking casein kinase (CK) sites in vivo. The phosphorylation of PER2 was carried out by the combined activities of casein kinase 1δ (CK1 δ) and casein kinase 1ε (CK1ε) and was antagonized by protein phosphatase 1. PER2 phosphorylation was rapidly induced in response to circadian entrainment of mammalian cell lines and occurred in both cytosolic and nuclear compartments. Importantly, we found that the pool of Ser-662-phosphorylated PER2 proteins was more stable than the pool of total PER2 molecules, implying that the FASPS phosphorylation cluster antagonizes PER2 degradation. Consistent with this idea, a Ser-662→Ala mutation that abrogated PER2 phosphorylation significantly reduced its half-life, whereas a phosphomimetic Ser-662→Asp substitution led to an elevation in half-life. Our combined findings provide new insights into PER2 regulation and the biochemical basis of FASPS.  相似文献   

8.
Mammalian circadian clock genes Per1 and Per2 are rhythmically expressed not only in the suprachiasmatic nucleus where the mammalian circadian clock exists, but also in other brain regions and peripheral tissues. The induced circadian oscillation of Per genes after treatment with high concentrations of serum or various drugs in cultured cells suggests the ubiquitous existence of the oscillatory mechanism. These treatments also result in a rapid surge of expression of Per1. It has been shown that multiple signaling pathways are involved in Per1 gene induction in culture cells. We used a dispersed primary cell culture made up of mouse cerebellar granule cells to examine the stimuli inducing the mPer genes and their signaling pathways in neuronal tissues expressing mPer genes. We demonstrated that mPer1, but not mPer2, mRNA expression was dependent on the depolarization state controlled by extracellular KCl concentration in the granule cell culture. Nifedipine treatment reduced mPer1 induction, suggesting that mPer1 mRNA expression depends on intracellular calcium concentration regulated through a voltage-dependent Ca2+ channel. Transient mPer1 mRNA induction was observed after elevating KCl concentration in the medium from 5 mM to 25 mM. This increased expression was suppressed by a calmodulin antagonist, or CaMKII/IV inhibitor, but not by MEK inhibitors. Addition of pituitary adenylate cyclase-activating polypeptide-38 to the medium also induced transient Per1 gene expression. This induction was mimicked by dibutyryl-cAMP and suppressed by a protein kinase A (PKA) inhibitor, but not by MEK inhibitors. These results suggest that Ca2+/calmodulin-dependent protein kinase II/IV- and PKA-dependent pathways are involved in high-KCl and PACAP-induced mPer1 induction, respectively, and neural tissues use multiple signaling pathways for mPer1 induction similar to culture cells.  相似文献   

9.
A genetic approach was used to investigate whether the emergence of circadian rhythms in murine pups is dependent on a functional maternal clock. Arrhythmic females bearing either the mPer1Brdm1/Per2Brdm1 or mPer2Brdm1/Cry1-/- double-mutant genotype were crossed with wild-type males under constant darkness. The heterozygous offspring have the genetic constitution for a functional circadian clock. Individual pups born to arrhythmic mPer1Brdm1/Per2Brdm1 and mPer2Brdm1/Cry1-/- mothers in constant darkness without external zeitgeber developed normal circadian rhythms, but their clocks were less synchronized to each other compared to wild-type animals. These findings indicate that development of circadian rhythms does not depend on a functional circadian clock in maternal tissue, extending previous findings obtained from pups born to SCN-lesioned mothers.  相似文献   

10.
The mPER1 and mPER2 proteins have important roles in the circadian clock mechanism, whereas mPER3 is expendable. Here we examine the posttranslational regulation of mPER3 in vivo in mouse liver and compare it to the other mPER proteins to define the salient features required for clock function. Like mPER1 and mPER2, mPER3 is phosphorylated, changes cellular location, and interacts with other clock proteins in a time-dependent manner. Consistent with behavioral data from mPer2/3 and mPer1/3 double-mutant mice, either mPER1 or mPER2 alone can sustain rhythmic posttranslational events. However, mPER3 is unable to sustain molecular rhythmicity in mPer1/2 double-mutant mice. Indeed, mPER3 is always cytoplasmic and is not phosphorylated in the livers of mPer1-deficient mice, suggesting that mPER3 is regulated by mPER1 at a posttranslational level. In vitro studies with chimeric proteins suggest that the inability of mPER3 to support circadian clock function results in part from lack of direct and stable interaction with casein kinase Iepsilon (CKIepsilon). We thus propose that the CKIepsilon-binding domain is critical not only for mPER phosphorylation but also for a functioning circadian clock.  相似文献   

11.
12.
13.
A novel E4BP4 element drives circadian expression of mPeriod2   总被引:1,自引:1,他引:0  
  相似文献   

14.
15.
Zheng B  Albrecht U  Kaasik K  Sage M  Lu W  Vaishnav S  Li Q  Sun ZS  Eichele G  Bradley A  Lee CC 《Cell》2001,105(5):683-694
  相似文献   

16.
17.
18.
19.

Background & Aims

The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ) that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine.

Methods

The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2m/m). In addition, the susceptibility to dextran sodium sulfate (DSS)-induced colitis was compared between wild-type mice and mPer2m/m mice.

Results

The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2m/m mice. mPer2m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice.

Conclusions

Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.  相似文献   

20.
The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号