首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
Zhu D  Lipsky RH  Marini AM 《Amino acids》2002,23(1-3):11-17
Summary.  Neuroprotective concentrations of N-methyl-D-aspartate (NMDA) promote survival of cerebellar granule cell neurons against glutamate excitotoxicity through a TrkB receptor-mediated brain-derived neurotrophic factor (BDNF) autocrine loop. However, the intracellular signaling pathway(s) are not clear. Our results show that PI-3 kinase/Akt is activated by either NMDA or BDNF displaying differential kinetics. BDNF and NMDA increased Akt phosphorylation within 5 minutes but maximal activation by NMDA was observed at 3 hours. Akt phosphorylation was completely blocked by the PI-3 kinase inhibitor LY294002. NMDA-mediated activation of Akt was completely blocked by MK-801 and partially blocked by the TrkB receptor inhibitor, K252a, indicating the requirement of TrkB receptors for maximal activation by NMDA. In contrast, BDNF-induced Akt phosphorylation was abolished by K252a, but not by the addition of MK-801. Therefore, the PI-3 kinase/Akt pathway is co-activated by NMDA and TrkB receptors. The kinetics of BDNF and NMDA-mediated activation of PI-3 kinase/Akt suggests that they have different roles in intraneuronal time-related events. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   

3.
MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.  相似文献   

4.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

5.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

6.
Abstract: We investigated the effect of chronically blocking NMDA receptor stimulation to examine changes in GABAA receptor expression and pharmacology in cerebellar granule cells at different stages of maturation. We have previously shown that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunits. When NMDA receptor stimulation is blocked with MK-801 during the first week in vitro, a decrease in the α1, γ2S, and γ2L receptor subunit mRNAs occurred. When present only during the second week, changes were limited to the α1 and γ2L mRNAs. Finally, if MK-801 was present during the first week and removed during the second week, these changes reversed. Whole-cell voltage-clamp recordings showed that treatment with MK-801 during either the first or second week increased the EC50 of the receptors for GABA and attenuated the potentiation mediated by flunitrazepam. Last, these properties were reversed if MK-801 was removed after the first week in vitro. Our results suggest that MK-801 reversibly inhibits GABAA receptor maturation by modulating receptor subunit expression and that the altered pharmacological responses appear to be dominated by changes in the levels of allosteric modulation mediated by the γ2 receptor subunit.  相似文献   

7.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

8.
The molecular events controlling glutamate receptor ion channel gating are complex. The movement of transmembrane domain M3 within N-methyl-d-aspartate (NMDA) receptor subunits has been suggested to be one structural determinant linking agonist binding to channel gating. Here we report that covalent modification of NR1-A652C or the analogous mutation in NR2A, -2B, -2C, or -2D by methanethiosulfonate ethylammonium (MT-SEA) occurs only in the presence of glutamate and glycine, and that modification potentiates recombinant NMDA receptor currents. The modified channels remain open even after removing glutamate and glycine from the external solution. The degree of potentiation depends on the identity of the NR2 subunit (NR2A < NR2B < NR2C,D) inversely correlating with previous measurements of channel open probability. MTSEA-induced modification of channels is associated with increased glutamate potency, increased mean single-channel open time, and slightly decreased channel conductance. Modified channels are insensitive to the competitive antagonists D-2-amino-5-phosphonovaleric acid (APV) and 7-Cl-kynurenic acid, as well as allosteric modulators of gating (extracellular protons and Zn(2+)). However, channels remain fully sensitive to Mg(2+) blockade and partially sensitive to pore block by (+)MK-801, (-)MK-801, ketamine, memantine, amantadine, and dextrorphan. The partial sensitivity to (+)MK-801 may reflect its ability to stimulate agonist unbinding from MT-SEA-modified receptors. In summary, these data suggest that the SYTANLAAF motif within M3 is a conserved and critical determinant of channel gating in all NMDA receptors.  相似文献   

9.
Glutamate is a classical excitotoxin of the central nervous system (CNS), but extensive work demonstrates neuroprotective roles of this neurotransmitter in developing CNS. Mechanisms of glutamate-mediated neuroprotection are still under scrutiny. In this study, we investigated mediators of glutamate-induced neuroprotection, and tested whether this neurotransmitter controls programmed cell death in the developing retina. The protective effect of N-methyl-d-aspartate (NMDA) upon differentiating cells of retinal explants was completely blocked by a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by an antibody to neurotrophin-4 (NT-4). Consistently, chronic activation of NMDA receptor increased the expression of BDNF and trkB mRNA, as well as BDNF protein content, but did not change the content of NT-4 mRNA in retinal tissue. Furthermore, we showed that in vivo inactivation of NMDA receptor by intraperitoneal injections of MK-801 increased natural cell death of specific cell populations of the post-natal retina. Our results show that chronic activation of NMDA receptors in vitro induces a BDNF-dependent neuroprotective state in differentiating retinal cells, and that NMDA receptor activation controls programmed cell death of developing retinal neurons in vivo.  相似文献   

10.
Although large quantities of glutamate are found in the carotid body, to date this excitatory neurotransmitter has not been assigned a role in chemoreception. To examine the possibility that glutamate and its N-methyl-d-aspartate (NMDA) receptors play a role in acclimatization after exposure to cyclic intermittent hypoxia (CIH), we exposed male Sprague-Dawley rats to cyclic hypoxia or to room air sham (Sham) for 8 h/day for 3 wk. Using RT-PCR, Western blot analysis, and immunohistochemistry, we found that ionotropic NMDA receptors, including NMDAR1, NMDAR2A, NMDAR2A/2B, are strongly expressed in the carotid body and colocalize with tyrosine hydroxylase in glomus cells. CIH exposure enhanced the expression of NMDAR1 and NMDAR2A/2B but did not substantially change the level of NMDAR2A. We assessed in vivo carotid sinus nerve activity (CSNA) at baseline, in response to acute hypoxia, in response to infused NMDA, and in response to infused endothelin-1 (ET-1) with and without MK-801, an NMDA receptor blocker. Infusion of NMDA augmented CSNA in CIH rats (124.61 +/- 2.64% of baseline) but not in sham-exposed rats. Administration of MK-801 did not alter baseline activity or response to acute hypoxia, in either CIH or sham animals but did reduce the effect of ET-1 infusion on CSNA (CSNA after ET-1 = 160.96 +/- 8.05% of baseline; ET-1 after MK-801 = 118.56 +/- 9.12%). We conclude that 3-wk CIH exposure increases expression of NMDA functional receptors in rats, suggesting glutamate and its receptors may play a role in hypoxic acclimatization to CIH.  相似文献   

11.
12.
Neurological symptoms are common in patients with glutaric acidemia type I (GA-I). Although the pathophysiology of this disorder is not yet fully established, 3-hydroxyglutaric acid (3-HGA), which accumulates in affected patients, has recently been demonstrated to be excitotoxic to embryonic chick and neonatal rat neurons probably via NMDA glutamate receptors. In the present study, we investigated the in vitro effects of 3-HGA on the [(3)H]glutamate and [(3)H]MK-801 (dizocilpine) binding to rat synaptic plasma membranes from cerebral cortex of young rats in order to elucidate the interactions of 3-HGA with glutamate receptors and its possible contribution to the in vitro excitotoxic properties of 3-HGA. 3-HGA (10-100 microM) significantly decreased Na(+)-dependent (up to 62%) and Na(+)-independent (up to 30%) [(3)H]glutamate binding to synaptic membranes, reflecting a possible competition between glutamate and 3-HGA for the glutamate transporter and receptor sites, respectively. Since a decrease in Na(+)-independent glutamate binding might represent an interaction of 3-HGA with glutamate receptors, we next investigated whether 3-HGA interacts with NMDA receptors by adding NMDA alone or combined with 3-HGA and measuring Na(+)-independent [(3)H]glutamate binding to synaptic membranes (binding to receptors). We verified that 3-HGA and NMDA, at 10 and 100 microM concentrations, decreased glutamate binding by up to 20 and 45%, respectively, and that the simultaneous addition of both substances did not provoke an additive effect, implying that they bind to NMDA receptors at the same site. Furthermore, the binding of the NMDA-channel blocker [(3)H ]MK-801 was significantly increased (approximately 32-40%) by 10 and 100 microM 3-HGA, implying that 3-HGA was able to open the NMDA channel allowing MK-801 binding, which is a characteristic of NMDA agonists. On the other hand, glutamate had a much higher stimulatory effect on this binding (180% increase), reflecting its strong NMDA agonist property. Furthermore, the simultaneous addition of 3-HGA and glutamate provoked an additive stimulatory effect on [(3)H]MK-801 binding to the NMDA receptor. These data indicate that, relatively to glutamate, 3-HGA is a weak agonist of NMDA receptors. Finally, we demonstrated that 3-HGA provoked a significant increase of extracellular calcium uptake by cerebral cortex slices, strengthening therefore, the view that 3-HGA activates NMDA receptors. The present study therefore, demonstrates at the molecular level that 3-HGA modulates glutamatergic neurotransmission and may explain previous findings relating the neurotoxic actions of this organic acid with excitotoxicity.  相似文献   

13.
NMDA receptor activation: critical role in oxidant tissue injury   总被引:7,自引:0,他引:7  
The excitatory amino acid glutamate serves important neurologic functions, but overactivation of its N-methyl-D-aspartate (NMDA) receptor is toxic to neurons (excitotoxicity). We report that NMDA receptor blocker MK-801 (dizocilpine maleate) attenuated oxidant injury induced by paraquat or by xanthine oxidase. We conclude that excitotoxicity may be a key factor in oxidant tissue injury.  相似文献   

14.
Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors.   总被引:1,自引:0,他引:1  
Previous experiments in our laboratory suggested that ammonium toxicity could be mediated by the NMDA type of glutamate receptors. To assess this hypothesis we tested if MK-801, a specific antagonist of the NMDA receptor, is able to prevent ammonium toxicity. Mice and rats were injected i.p. with 12 and 7 mmol/kg of ammonium acetate, respectively. 73% of the mice and 70% of the rats died. However, when the animals were injected i.p. with 2 mg/kg of MK-801, 15 min before ammonium injection, only 5% of the mice and 15% of the rats died. The remarkable protection afforded by MK-801 indicates that ammonia toxicity is mediated by the NMDA receptor.  相似文献   

15.
A [3H]-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of [3H]-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) [3H]MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) [3H]MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamate and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) [3H]MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.  相似文献   

16.
17.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

18.
The endogenous polyamines spermine and spermidine increase the binding of [3H]MK-801 to NMDA receptors. This effect is antagonized by diethylenetriamine (DET). We report here that spermine increases the rates of both association and dissociation of binding of [3H]MK-801, suggesting that it increases the accessibility of the binding site for MK-801 within the ion channel of the receptor complex. 1,10-Diaminodecane (DA10) inhibited the binding of [3H]MK-801. This effect was due to a decrease in the rate of association with no change in the rate of dissociation of [3H]MK-801. The effect of DA10 was not mediated by an action of DA10 at the binding sites for glutamate, glycine, Mg2+, or Zn2+, and was attenuated by DET. This suggests that DA10 acts at the polyamine recognition site. In hippocampal neurons the NMDA-elicited current was decreased by DA10, an effect opposite to that of spermine. The effects of spermine and DA10 were selectively blocked by DET. It is concluded that DA10 acts as a negative allosteric modulator or inverse agonist at the polyamine recognition site of the NMDA receptor.  相似文献   

19.
During visual system development, programmed cell death occurs in order to facilitate the establishment of correct connections and synapses. During this period, glutamate plays a very important role as an excitatory neurotransmitter. With a view to evaluating if NMDA glutamate receptors participate in the regulation of apoptosis which occurs during the development of the rat retina, we subcutaneously injected the NMDA receptor antagonist MK-801 into rats at different stages of early postnatal development (P2 to P9). Ensuing cell death in the retina and superior colliculus was analyzed by using the Feulgen method. MK-801 administration had no effect on the survival of photoreceptor cells. In contrast, the presence of this antagonist induced a significant increase in the number of apoptotic cells in the neuroblastic layer (P7 and P8) and ganglion cell layer (P6-P8), as well as in the superior colliculus which receives afferent contacts from retinal ganglion cells during P7-P9. We conclude that during development, specific types of cells in the mammalian retina are critically dependent for their survival on glutamate stimulation through NMDA receptors. These findings thus throw fresh light on the mechanisms of development of the rat visual system by identifying NMDA glutamate receptors as participants in the regulation of apoptotic processes which occur during the initial stages of development.  相似文献   

20.
Y Kloog  V Nadler  M Sokolovsky 《FEBS letters》1988,230(1-2):167-170
Binding of the labeled anticonvulsant drug [3H]dibenzocycloalkenimine (3H]MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its dissociation from the receptor at 25°C are slow processes, both of which follow first order kinetics (t1/270 and 180 min, respectively). Both reactions are markedly accelerated by glutamate and glycine (t1/22-8 and 4 min, respectively), which allow bimolecular association kinetics of the labeled drug with the receptors whereas equilibrium binding of [3H]MK-801 (Kd 2–4 nM) is hardly affected by glutamate and glycine. The data suggest that MK-801 acts as a steric blocker of the NMDA receptor channel. The competitive antagonist D-(−)-2-amino-5-phosphovaleric acid (AP-5) freezes the receptor in a state which precludes either binding of [3H]MK-801 to the receptor channel or its dissociation from it. These findings have therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号