首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Martin SS  Chu VC  Baldwin E 《Biochemistry》2003,42(22):6814-6826
Cre promotes recombination at the 34 bp LoxP sequence. Substitution of a critical C-G base pair in LoxP with an A-T base pair, to give LoxAT, reduced Cre binding in vitro and abolished recombination in vivo [Hartung, M., and Kisters-Woike, B. (1998) J. Biol. Chem. 273, 22884-22891].We demonstrated that LoxAT can be recombined in vitro. However, Cre discriminates against this substrate both before and after DNA binding. The preference for LoxP over LoxAT is the result of reduced binding and a slower turnover rate, amplified by changes in cooperativity of complex assembly. With LoxAT, similar levels of substrate turnover required 2-2.5-fold higher protein-DNA concentrations compared to LoxP, but the sigmoidal behavior of the concentration dependence was more pronounced. Further, the Cre-LoxAT complexes reacted 4-5-fold more slowly. In the 2.3 A resolution Cre-LoxAT complex structure, the major groove Arg259-guanine interaction was disrupted, explaining the reduced binding. Overall structural shifts and mobility changes indicate more favorable interactions between subunits, providing a hypothesis for the reduced turnover rate. Concomitant with the displacement of Arg259 from the DNA, adjacent charged residues Glu262 and Glu266 shifted to form salt bridges with the Arg259 guanidinium moiety. Substitution of Glu262 and Glu266 with glutamine increased Cre complex assembly efficiency and reaction rates with both LoxAT and LoxP, but diminished Cre's ability to distinguish them. The increased rate of this variant suggests that DNA substrate binding and turnover are coupled. The improved efficiency, made at some expense of sequence discrimination, may be useful for enhancing recombination in vivo.  相似文献   

2.
Cre recombinase uses two pairs of sequential cleavage and religation reactions to exchange homologous DNA strands between 34 base-pair (bp) LoxP recognition sequences. In the oligomeric recombination complex, a switch between "cleaving" and "non-cleaving" subunit conformations regulates the number, order, and regio-specificity of the strand exchanges. However, the particular sequence of events has been in question. From analysis of strand composition of the Holliday junction (HJ) intermediate, we determined that Cre initiates recombination of LoxP by cleaving the upper strand on the left arm. Cre preferred to react with the left arm of a LoxP suicide substrate, but at a similar rate to the right arm, indicating that the first strand to be exchanged is selected prior to cleavage. We propose that during complex assembly the cleaving subunit preferentially associates with the LoxP left arm, directing the first strand exchange to that side. In addition, this biased assembly would enforce productive orientation of LoxP sites in the recombination synapses. A novel Cre-HJ complex structure in which LoxP was oriented with the left arm bound by the cleaving Cre subunit suggested a physical basis for the strand exchange order. Lys86 and Lys201 interact with the left arm scissile adenine base differently than in structures that have a scissile guanine. These interactions are associated with positioning the 198-208 loop, a structural component of the conformational switch, in a configuration that is specific to the cleaving conformation. Our results suggest that strand exchange order and site alignment are regulated by an "induced fit" mechanism in which the cleaving conformation is selectively stabilized through protein-DNA interactions with the scissile base on the strand that is cleaved first.  相似文献   

3.
During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to selectively stabilize the "activated" phosphate conformation in order to promote cleavage.  相似文献   

4.
Cre recombinase is a prototypical member of the tyrosine recombinase family of site-specific recombinases. Members of this family of enzymes catalyze recombination between specific DNA sequences by cleaving and exchanging one pair of strands between the two substrate sites to form a 4-way Holliday junction (HJ) intermediate and then resolve the HJ intermediate to recombinant products by a second round of strand exchanges. Recently, hexapeptide inhibitors have been described that are capable of blocking the second strand exchange step in the tyrosine recombinase recombination pathway, leading to an accumulation of the HJ intermediate. These peptides are active in the lambda-integrase, Cre recombinase, and Flp recombinase systems and are potentially important tools for both in vitro mechanistic studies and as in vivo probes of cellular function. Here we present biochemical and crystallographic data that support a model where the peptide inhibitor binds in the center of the recombinase-bound DNA junction and interacts with solvent-exposed bases near the junction branch point. Peptide binding induces large conformational changes in the DNA strands of the HJ intermediate, which affect the active site geometries in the recombinase subunits.  相似文献   

5.
The crystal structure of a novel Cre-Lox synapse was solved using phases from multiple isomorphous replacement and anomalous scattering, and refined to 2.05 A resolution. In this complex, a symmetric protein trimer is bound to a Y-shaped three-way DNA junction, a marked departure from the pseudo-4-fold symmetrical tetramer associated with Cre-mediated LoxP recombination. The three-way DNA junction was accommodated by a simple kink without significant distortion of the adjoining DNA duplexes. Although the mean angle between DNA arms in the Y and X structures was similar, adjacent Cre trimer subunits rotated 29 degrees relative to those in the tetramers. This rotation was accommodated at the protein-protein and DNA-DNA interfaces by interactions that are "quasi-equivalent" to those in the tetramer, analogous to packing differences of chemically identical viral subunits at non-equivalent positions in icosahedral capsids. This structural quasi-equivalence extends to function as Cre can bind to, cleave and perform strand transfer with a three-way Lox substrate. The structure explains the dual recognition of three and four-way junctions by site-specific recombinases as being due to shared structural features between the differently branched substrates and plasticity of the protein-protein interfaces. To our knowledge, this is the first direct demonstration of quasi-equivalence in both the assembly and function of an oligomeric enzyme.  相似文献   

6.
Cre/LoxP‐mediated recombination allows for conditional gene activation or inactivation. When combined with an independent lineage‐tracing reporter allele, this technique traces the lineage of presumptive genetically modified Cre‐expressing cells. Several studies have suggested that floxed alleles have differential sensitivities to Cre‐mediated recombination, which raises concerns regarding utilization of Cre‐reporters to monitor recombination of other floxed loci of interest. Here, we directly investigate the recombination correlation, at cellular resolution, between several floxed alleles induced by Cre‐expressing mouse lines. The recombination correlation between different reporter alleles varied greatly in otherwise genetically identical cell types. The chromosomal location of floxed alleles, distance between LoxP sites, sequences flanking the LoxP sites, and the level of Cre activity per cell all likely contribute to observed variations in recombination correlation. These findings directly demonstrate that, due to non‐parallel recombination events, commonly available Cre reporter mice cannot be reliably utilized, in all cases, to trace cells that have DNA recombination in independent‐target floxed alleles, and that careful validation of recombination correlations are required for proper interpretation of studies designed to trace the lineage of genetically modified populations, especially in mosaic situations. genesis 51:436–442. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
D N Gopaul  F Guo    G D Van Duyne 《The EMBO journal》1998,17(14):4175-4187
We have determined the X-ray crystal structures of two DNA Holliday junctions (HJs) bound by Cre recombinase. The HJ is a four-way branched structure that occurs as an intermediate in genetic recombination pathways, including site-specific recombination by the lambda-integrase family. Cre recombinase is an integrase family member that recombines 34 bp loxP sites in the absence of accessory proteins or auxiliary DNA sequences. The 2.7 A structure of Cre recombinase bound to an immobile HJ and the 2.5 A structure of Cre recombinase bound to a symmetric, nicked HJ reveal a nearly planar, twofold-symmetric DNA intermediate that shares features with both the stacked-X and the square conformations of the HJ that exist in the unbound state. The structures support a protein-mediated crossover isomerization of the junction that acts as the switch responsible for activation and deactivation of recombinase active sites. In this model, a subtle isomerization of the Cre recombinase-HJ quaternary structure dictates which strands are cleaved during resolution of the junction via a mechanism that involves neither branch migration nor helical restacking.  相似文献   

8.
组织特异性表达Cre重组酶的转基因小鼠是进行组织特异性条件敲除研究的关键。采用PCR扩增大鼠胰岛素基因705bp启动子指导发胰岛细胞中特异表达;同时采用改构的Cre重组酶基因,在其5'端添加有真核核糖体结合序列和核定位序列使Cre重组酶能穿越核膜在细胞核能发挥功能;同时,为了保证原核基因Cre能在真核系统顺利表达,在其3'端添加含内含子的人生长激素基因。构建的表达载体在去除原核序列后用显微注射方法转基因小鼠,在出生的27只仔鼠中,PCR检测共获得7只Cre整合阳性的转基因小鼠,整合率26%。这种Cre转基因小鼠与基因组小携带LoxP位点的条件基因打靶小鼠交配,在胰腺组织中可以检测到Cre介导的重组,表明Cre在转基因小鼠胰腺中有表达。  相似文献   

9.
为了实现在P.stipitis中进行无痕基因敲除,以Cre/LoxP系统为研究对象,首先通过同源重组构建尿嘧啶营养缺陷型树干毕赤酵母(ura3-);同时通过定点突变pSH47-Hpt质粒的hpt基因和cre基因,将CDS区CTG突变为TTG;最后以乙醛脱氢酶基因为靶基因,验证突变后的Cre/LoxP系统在P.stipitis进行无痕基因敲除的可行性。结果表明:本文在P.stipitis中成功使用潮霉素B抗性标记,经过修饰后的Cre/LoxP敲除系统能够在P.stipitis中无痕敲除目的基因,为后续研究P.stipitis功能基因和改造代谢途径提供了一种试验方法和筛选标记。  相似文献   

10.
DNA重组酶Cre可以识别LoxP位点,使含有LoxP位点的DNA分子发生重组:2个同向LoxP之间的DNA片段被删除,2个环状DNA分子被整合为一个大分子.基于Cre酶的这些作用特性,构建了一套载体间基因的重组转移体系,在Cre酶的作用下,gfp基因被从基因供体pTLG上切除下来,然后转移到基因受体pET-LoxP上,从而快速、简便地完成了gfp基因高效表达载体pET-gfp的构建.gfp基因在大肠杆菌BL21(DE3)中被诱导表达,使菌落产生了可视的绿色荧光.通过对荧光菌落的计数分析,比较了环状基因供体pTLG和线性基因供体pTLG对有效重组率的影响.使繁琐的传统载体构建变为简单的酶促反应,极大地简化了载体构建步骤,为Cre酶在基因克隆和亚克隆中的应用提供了很好的研究基础.  相似文献   

11.
RecQ helicases, essential enzymes for maintaining genome integrity, possess the capability to participate in a wide variety of DNA metabolisms. They can initiate the homologous recombination repair pathway by unwinding damaged dsDNA and suppress hyper-recombination by promoting Holliday junction (HJ) migration. To learn how DrRecQ participates in the homologous recombination repair pathway, solution structures of Deinococcus radiodurans RecQ (DrRecQ) and its complexes with DNA substrates were investigated by small angle x-ray scattering. We found that the catalytic core and the most N-terminal HRDC (helicase and RNase D C-terminal) domain (HRDC1) undergo a conformational change to a compact state upon binding to a junction DNA. Furthermore, models of DrRecQ in complexes with two kinds of junction DNA (fork junction and HJ) were built based on the small angle x-ray scattering data, and together with the EMSA results, possible binding sites were proposed. It is demonstrated that two DrRecQ molecules bind to the opposite arms of HJ. This architecture is similar to the RuvAB complex and is hypothesized to be highly conserved in the other HJ migration proteins. This work provides us new clues to understand the roles DrRecQ plays in the RecFOR pathway.  相似文献   

12.
程萱  翁土军  谭晓红  侯宁  王健  林福玉  黄培堂  杨晓 《遗传》2007,29(10):1237-1242
构建了含有骨钙素基因启动子、Cre重组酶基因和人生长激素基因polyA的转基因载体pOC-Cre, 以显微注射的方法将4.6 kb的转基因片段OC-Cre导入小鼠受精卵。16只子代小鼠中经PCR和Southern杂交鉴定, 有2只小鼠携带外源基因, 整合率为12.5%。为了检测OC-Cre在转基因小鼠中表达的组织特异性, 将转基因首建者小鼠与基因组上携带有LoxP位点的条件性Smad4基因敲除小鼠交配, PCR结果显示, 仅在子代纯合型小鼠骨组织基因组中扩增出了Cre介导重组后的片段。将OC-Cre转基因小鼠与ROSA26报告小鼠交配, 利用LacZ染色对双转基因阳性子代小鼠进行检测, 结果显示Cre重组酶在成骨细胞中特异性表达并介导ROSA基因座LoxP位点间的重组。所有这些结果说明:所建立的OC-Cre转基因小鼠在成骨细胞中特异性表达Cre重组酶, 并能在体内介导成骨细胞基因组上LoxP位点间的重组, 是一种理想的研制成骨细胞特异性基因敲除小鼠的工具小鼠。  相似文献   

13.
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.  相似文献   

14.
Conservative site-specific recombinases of the integrase family carry out recombination via a Holliday intermediate. The Cre recombinase, a member of the integrase family, was previously shown to initiate recombination by cleaving and exchanging preferentially on the bottom strand of its loxP target sequence. We have confirmed this strand bias for an intermolecular recombination reaction that used wild-type loxP sites and Cre protein. We have examined the sequence determinants for this strand preference by selectively mutating the two asymmetric scissile base-pairs in the lox site (those immediately adjacent to the sites of cleavage by Cre). We found that the initial strand exchange occurs preferentially next to the scissile G residue. Resolution of the Holliday intermediate thus formed takes place preferentially next to the scissile A residue. Lys86, which contacts the scissile nucleotides in the Cre-lox crystal structures, was important for establishing the strand preference in the resolution of the loxP-Holliday intermediate, but not for the initiation of recombination between loxP sites.  相似文献   

15.
Intein-mediated rapid purification of Cre recombinase   总被引:1,自引:0,他引:1  
Cre recombinase produced by bacteriophage P1 catalyzes site-specific recombination of DNA between loxP recognition sites in both prokaryotic and eukaryotic cells and has been widely used for genome engineering and in vitro cloning. Recombinant Cre has been overproduced in Escherichia coli and its purification involves multiple steps. In this report, we used an "intein" fusion system to express Cre as a C-terminal fusion to a modified protein splicing element, i.e., intein. The modified intein contained a Bacillus circulans chitin-binding domain which allowed binding of the fusion protein on a chitin column and could be induced to undergo in vitro peptide bond cleavage which specifically released Cre from the column. Using the intein system, we have obtained highly pure nontagged Cre after just a single chromatographic step, which corresponded to approximately 80% recovery and 27-fold purification. The activity of the purified Cre was determined in an in vitro assay system and was found to remain stable over a period of more than 6 months.  相似文献   

16.
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.  相似文献   

17.
High efficiencies of recombination between LoxP elements were initially recorded when the Cre recombinase was expressed in meiotic spermatocytes. However, it was unexpectedly found that LoxP recombination fell to very low values at the second generation of mice expressing Cre during meiosis. The inability of the LoxP elements to serve as recombination substrates was correlated with cytosine methylation, initially in LoxP and transgene sequences, but later extending for distances of at least several kilobases into chromosomal sequences. It also affected the allelic locus, implying a transfer of structural information between alleles similar to the transvection phenomenon described in Drosophila. Once initiated following Cre-LoxP interaction, neither cis-extension nor transvection of the methylated state required the continuous expression of Cre, as they occurred both in germinal and somatic cells and in the fraction of the offspring that had not inherited the Sycp1-Cre transgene. Therefore, these processes depend on a physiological mechanism of establishment and extension of an epigenetic state, for which they provide an experimental model.  相似文献   

18.
Equilibrium as well as pre-steady-state measurements were performed to characterize the molecular basis of DNA binding and nucleotide incorporation by the thermostable archaeal DinB homologue (Dbh) DNA polymerase of Sulfolobus solfataricus. Equilibrium titrations show a DNA binding affinity of about 60 nm, which is approximately 10-fold lower compared with other DNA polymerases. Investigations of the binding kinetics applying stopped-flow and pressure jump techniques confirm this weak binding affinity. Furthermore, these measurements suggest that the DNA binding occurs in a single step, diffusion-controlled manner. Single-turnover, single dNTP incorporation studies reveal maximal pre-steady-state burst rates of 0.64, 2.5, 3.7, and 5.6 s(-1) for dTTP, dATP, dGTP, and dCTP (at 25 degrees C), which is 10-100-fold slower than the corresponding rates of classical DNA polymerases. Another unique feature of the Dbh is the very low nucleotide binding affinity (K(d) approximately 600 mum), which again is 10-20-fold lower compared with classical DNA polymerases as well as other Y-family polymerases. Surprisingly, the rate-limiting step of nucleotide incorporation (correct and incorrect) is the chemical step (phosphoryl transfer) and not a conformational change of the enzyme. Thus, unlike replicative polymerases, an "induced fit" mechanism to select and incorporate nucleotides during DNA polymerization could not be detected for Dbh.  相似文献   

19.
Cre initiates recombination by preferentially exchanging the bottom strands of the loxP site to form a Holliday intermediate, which is then resolved on the top strands. We previously found that the scissile AT and GC base pairs immediately 5' to the scissile phosphodiester bonds are critical in determining this order of strand exchange. We report here that the scissile base pairs also influence the Cre-induced DNA bends, the position of which correlates with the initial site of strand exchange. The binding of one Cre molecule to a loxP site induces a approximately 35 degrees asymmetric bend adjacent to the scissile GC base pair. The binding of two Cre molecules to a loxP site induces a approximately 55 degrees asymmetric bend near the center of the spacer region with a slight bias toward the scissile A. Lys-86, which contacts the scissile nucleotides, is important for establishing the bend near the scissile GC base pair when one Cre molecule is bound but has little role in positioning the bend when two Cre molecules are bound to a loxP site. We present a model relating the position of the Cre-induced bends to the order of strand exchange in the Cre-catalyzed recombination reaction.  相似文献   

20.
根据GenBank已发表的pEGFP-C1序列,设计并合成两对引物,PCR扩增出两端各含一loxP位点的GFP表达盒GFP-loxP。克隆于转移载体pSKLR获得pSKLR-GFP-loxP。基于同源重组原理, pSKLR-GFP-loxP与 PRV SH株基因组DNA共转染293T细胞,在BrdU 的筛选压力下,利用蚀斑法在TK-143细胞上筛选出表达GFP的TK基因缺失的重组毒株rPRV1。将表达Cre酶的质粒载体pPOG231与rPRV1基因组DNA共转染293T细胞,在Cre酶的作用下去除GFP表达盒以及一个loxP位点,筛选得到含单个loxP位点的重组病毒株rPRV2。PCR 扩增证实所获得的重组病毒TK缺失270bp,只有一个34bp的loxP位点,并且能在RK-13细胞上稳定传代。LD50试验表明rPrV2的毒力下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号