首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joris Everaert 《Bird Study》2013,60(2):220-230
Capsule Local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms.

Aims The impact of bird collisions was studied at eight land-based wind farm sites with a total of 66 small to large turbines in order to assess the mortality rate and collision risk.

Methods Searches for collision fatalities were performed under all turbines with a minimum search interval of 14 days. Mortality rate was calculated with corrections for available search area, scavenging and search efficiency. Flight movements of birds crossing five of the wind farm sites were recorded during a minimum of four days per site. Actual collision risk was then calculated as the number of collision fatalities relative to the average surveyed flight intensity.

Results Mortality rate was 21 birds per turbine per year on average. Most fatalities were local common species (e.g. gulls) but rarer species were also found (e.g. terns, raptors and waders). Collision risk of gulls was 0.05% and 0.08% on average for birds, respectively, flying at turbine and rotor height through the wind farms (0.09% and 0.14% maximum). Large gulls had a significant higher collision risk than small gulls at rotor height. Mortality rate and collision risk were not significantly related to turbine size. The results were integrated in a widely used collision risk model to obtain information of micro-avoidance, i.e. the proportion of birds that fly through the wind farm but avoid passing through the rotor swept area of the turbines. For gulls, this micro-avoidance was 96.1% and 96.3% on average for birds, respectively, flying at turbine and rotor height through the wind farms.

Conclusion The results indicate that local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms. However, large turbines have more installed capacity (MW), so repowering wind farms with larger but fewer wind turbines, could reduce total mortality at certain locations.  相似文献   

2.
Abstract: Birds flying within windfarms can be killed when they collide with wind turbines. Raptors, especially red-tailed hawks (Buteo jamaicensis), are more susceptible to collisions than other birds, which may be attributable to their specific foraging and flight behavior. To more fully understand the problem, and to reduce raptor mortality, it is necessary to acquire more information on habitat use and flight behavior by raptors inhabiting windfarms. Between June 1999 and June 2000, we watched raptors for 346 hours in the Altamont Pass Wind Resource Area, the largest windfarm in North America. We recorded flight behavior in relation to characteristics of the topography such as slope aspect, elevation, and inclination and in relation to various weather variables including wind speed and wind direction. We found that red-tailed hawk behavior and their use of slope aspect differed according to wind speed. Hawks perched more often in weak winds than in strong. Red-tailed hawks were more likely to soar during low wind conditions and kite during strong wind, particularly on hillsides that faced into the wind as opposed to hillsides shielded from the wind. This is likely a result of their use of deflection updrafts for lift during flight. During our study, when winds were strong and from the south-southwest, kiting behavior occurred on south-southwestern facing slopes with inclines of greater than 20% and peak elevations greater than adjacent slopes. Accordingly, mitigation measures to decrease red-tailed hawk fatalities should be directed specifically to these areas and others fitting this general model. Wind farm managers can power down turbines at the top of these hazardous slopes when they pose the greatest danger—when winds are strong and facing perpendicularly to the slope.  相似文献   

3.
Wind farming is a relatively new form of obtaining energy that does not cause air pollution or other forms of environmental degradation associated with fossil fuel technologies. However, their use impacts on the environment, and the current rate at which they are being put into operation, combined with poor understanding of their medium- and long-term impact, is a cause of concern. Wind farms represent a new source of impact and disturbance for birds that adds to the long list of disturbance factors caused by human activity, such as power lines, radio and television towers, highways, glass windows, the practice of poisoning, illegal hunting and overexploitation. Due to the precarious situation of several bird species and their decline, any additional cause of mortality may be significant and should give rise to increased attention and research. The aim of the present work is to analyse the effect of the “Sierra de Aguas” wind farm on bird density and abundance, flight behaviour, and bird mortality. Mortality rates did not increase due to the presence of the wind turbines. The results suggest that the presence and operation of the wind turbines did not have a clearly negative effect on passerine birds present in the region where wind farm is located. However, raptors used the space around the wind farm with lower frequency than prior to its existence, which represented a displacement of the home range of these species.  相似文献   

4.
We studied the impact of a wind farm (line of 25 small to medium sized turbines) on birds at the eastern port breakwater in Zeebrugge, Belgium, with special attention to the nearby breeding colony of Common Tern Sterna hirundo, Sandwich Tern Sterna sandvicensis and Little Tern Sterna albifrons. With the data of found collision fatalities under the wind turbines, and the correction factors for available search area, search efficiency and scavenging, we calculated that during the breeding seasons in 2004 and 2005, about 168 resp. 161 terns collided with the wind turbines located on the eastern port breakwater close to the breeding colony, mainly Common Terns and Sandwich Terns. The mean number of terns killed in 2004 and 2005 was 6.7 per turbine per year for the whole wind farm, and 11.2 resp. 10.8 per turbine per year for the line of 14 turbines on the sea-directed breakwater close to the breeding colony. The mean number of collision fatalities when including other species (mainly gulls) in 2004 and 2005 was 20.9 resp. 19.1 per turbine per year for the whole wind farm and 34.3 resp. 27.6 per turbine per year for 14 turbines on the sea-directed breakwater. The collision probability for Common Terns crossing the line of wind turbines amounted 0.110–0.118% for flights at rotor height and 0.007–0.030% for all flights. For Sandwich Tern this probability was 0.046–0.088% for flights at rotor height and 0.005–0.006% for all flights. The breeding terns were almost not disturbed by the wind turbines, but the relative large number of tern fatalities was determined as a significant negative impact on the breeding colony at the eastern port breakwater (additional mortality of 3.0–4.4% for Common Tern, 1.8–6.7% for Little Tern and 0.6–0.7% for Sandwich Tern). We recommend that there should be precautionary avoidance of constructing wind turbines close to any important breeding colony of terns or gulls, nor should artificial breeding sites be constructed near wind turbines, especially not within the frequent foraging flight paths.  相似文献   

5.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

6.

Background

Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms.

Methodology/Principal Findings

As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model.

Conclusions

Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.  相似文献   

7.
The rapid development of wind energy may have negative effects on bird populations, including collisions with turbines, displacement due to disturbance or habitat loss, indirect effects of reduced breeding success and barrier effects. This challenging conservation issue has attracted a great deal of interest, but the noise generated by turbines has been largely overlooked. Here, we studied acoustic behaviour of Skylarks Alauda arvensis in relation to wind farm start‐up to assess whether a change in song parameters can indicate a deterioration in the acoustic environment. We recorded territorial males displaying close to operating and non‐operating turbines and at a control site without turbines. In the following breeding season, we undertook replications at the same sites, except that the non‐operating turbines were now in operation. We found that Skylarks displaying at the wind farm were affected by wind turbine noise. Males singing close to operating wind turbines sang higher‐frequency songs than males from a control site and those that displayed near non‐operating turbines. In addition, an upward frequency shift in songs was observed when non‐operating turbines started to operate in the consecutive season. We therefore conclude that the frequency shift observed did not result from turbine presence, but from the noise they started to generate. This shows that a change in song parameters may reliably and within a relatively short time indicate a significant deterioration of the acoustic environment as a consequence of wind farm start‐up. This may help conservation biologists to identify species and populations that are particularly susceptible to wind farm noise.  相似文献   

8.
Flight behaviour characteristics such as flight altitude and avoidance behaviour determine the species-specific collision risk of birds with wind turbines. However, traditional observational methods exhibit limited positional accuracy. High-resolution GPS telemetry represents a promising method to overcome this drawback. In this study, we used three-dimensional GPS tracking data including high-accuracy tracks recorded at 3-s intervals to investigate the collision risk of breeding male Montagu's Harriers Circus pygargus in the Dutch–German border region. Avoidance of wind turbines was quantified by a novel approach comparing observed flights to a null model of random flight behaviour. On average, Montagu's Harriers spent as much as 8.2 h per day in flight. Most flights were at low altitude, with only 7.1% within the average rotor height range (RHR; 45–125 m). Montagu's Harriers showed significant avoidance behaviour, approaching turbines less often than expected, particularly when flying within the RHR (avoidance rate of 93.5%). For the present state, with wind farms situated on the fringes of the regional nesting range, collision risk models based on our new insights on flight behaviour indicated 0.6–2.0 yearly collisions of adult males (as compared with a population size of c. 40 pairs). However, the erection of a new wind farm inside the core breeding area could markedly increase mortality (up to 9.7 yearly collisions). If repowering of the wind farms was carried out using low-reaching modern turbines (RHR 36–150 m), mortality would more than double, whereas it would stay approximately constant if higher turbines (RHR 86–200 m) were used. Our study demonstrates the great potential of high-resolution GPS tracking for collision risk assessments. The resulting information on collision-related flight behaviour allows for performing detailed scenario analyses on wind farm siting and turbine design, in contrast to current environmental assessment practices. With regard to Montagu's Harriers, we conclude that although the deployment of higher wind turbines represents an opportunity to reduce collision risk for this species, precluding wind energy developments in core breeding areas remains the most important mitigation measure.  相似文献   

9.
GRAHAM R. MARTIN 《Ibis》2011,153(2):239-254
Sensory ecology investigates the information that underlies an animal’s interactions with its environment. A sensory ecology framework is used here to seek to assess why flying birds collide with prominent structures, such as power lines, fences, communication masts, wind turbines and buildings, which intrude into the open airspace. Such collisions occur under conditions of both high and low visibility. It is argued that a human perspective of the problems posed by these obstacles is unhelpful. Birds live in different visual worlds and key aspects of these differences are summarized. When in flight, birds may turn their heads in both pitch and yaw to look down, either with the binocular field or with the lateral part of an eye’s visual field. Such behaviour may be usual and results in certain species being at least temporarily blind in the direction of travel. Furthermore, even if birds are looking ahead, frontal vision may not be in high resolution. In general, high resolution occurs in the lateral fields of view and frontal vision in birds may be tuned for the detection of movement concerned with the extraction of information from the optical flow field, rather than the detection of high spatial detail. Birds probably employ lateral vision for the detection of conspecifics, foraging opportunities and predators. The detection of these may be more important than simply looking ahead during flight in the open airspace. Birds in flight may predict that the environment ahead is not cluttered. Even if they are facing forward, they may fail to see an obstacle as they may not predict obstructions; perceptually they have no ‘prior’ for human artefacts such as buildings, power wires or wind turbines. Birds have only a restricted range of flight speeds that can be used to adjust their rate of gain of visual information as the sensory challenges of the environment change. It is argued that to reduce collisions with known hazards, something placed upon the ground may be more important than something placed on the obstacle itself. Foraging patches, conspecific models or alerting sounds placed a suitable distance from the hazard may be an effective way of reducing collisions in certain locations. However, there is unlikely to be a single effective way to reduce collisions for multiple species at any one site. Warning or diversion and distraction solutions may need to be tailored for particular target species.  相似文献   

10.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (?79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.  相似文献   

11.
Collisions with wind turbines are an increasing conservation concern for migratory birds that already face many threats. Existing collision‐risk models take into account parameters of wind turbines and bird flight behavior to estimate collision probability and mortality rates. Two behavioral characteristics these models require are the proportion of birds flying at the height of the rotor swept‐zone and the flight speed of birds passing through the rotor swept‐zone. In recent studies, investigators have measured flight height and flight speed of migrating birds using fixed‐beam radar and thermal imaging. These techniques work well for fixed areas where migrants commonly pass over, but they cannot readily provide species‐specific information. We measured flight heights of a nesting shorebird, the federally threatened Piping Plover (Charadrius melodus), using optical range finding and measured flight speed using videography. Several single‐turbine wind projects have been proposed for the Atlantic coast of the United States where they may pose a potential threat to these plovers. We studied Piping Plovers in New Jersey and Massachusetts during the breeding seasons of 2012 and 2013. Measured flight heights ranged from 0.7 to 10.5 m with a mean of 2.6 m (N = 19). Concurrent visually estimated flight heights were all within 2 m of measured heights and most within 1 m. In separate surveys, average visually estimated flight height was 2.6 m (N = 1674) and ranged from 0.25 m to 40 m. Average calculated flight speed was 9.30 m/s (N = 17). Optical range finding was challenging, but provided a useful way to calibrate visual estimates where frames of reference were lacking in the environment. Our techniques provide comparatively inexpensive, replicable procedures for estimating turbine collision‐risk parameters where the focus is on discrete nesting areas of specific species where birds follow predictable flight paths.  相似文献   

12.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

13.
Avian collision risk at an offshore wind farm   总被引:1,自引:0,他引:1  
We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision.  相似文献   

14.
ABSTRACT.   Previous studies using thermal imaging cameras (TI) have used target size as an indicator of target altitude when radar was not available, but this approach may lead to errors if birds that differ greatly in size are actually flying at the same altitude. To overcome this potential difficulty and obtain more accurate measures of the flight altitudes and numbers of individual migrants, we have developed a technique that combines a vertically pointed stationary radar beam and a vertically pointed thermal imaging camera (VERTRAD/TI). The TI provides accurate counts of the birds passing through a fixed, circular sampling area in the TI display, and the radar provides accurate data on their flight altitudes. We analyzed samples of VERTRAD/TI video data collected during nocturnal fall migration in 2000 and 2003 and during the arrival of spring trans-Gulf migration during the daytime in 2003. We used a video peak store (VPS) to make time exposures of target tracks in the video record of the TI and developed criteria to distinguish birds, foraging bats, and insects based on characteristics of the tracks in the VPS images and the altitude of the targets. The TI worked equally well during daytime and nighttime observations and best when skies were clear, because thermal radiance from cloud heat often obscured targets. The VERTRAD/TI system, though costly, is a valuable tool for measuring accurate bird migration traffic rates (the number of birds crossing 1609.34 m [1 statute mile] of front per hour) for different altitudinal strata above 25 m. The technique can be used to estimate the potential risk of migrating birds colliding with man-made obstacles of various heights (e.g., communication and broadcast towers and wind turbines)—a subject of increasing importance to conservation biologists.  相似文献   

15.
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.  相似文献   

16.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds'' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes.  相似文献   

17.
High resolution numerical atmospheric modeling around a mountain ridge in Northeastern British Columbia (BC), Canada was performed in order to examine the influence of meteorology and topography on Golden Eagle migration pathways at the meso-scale (tens of km). During three eagle fall migration periods (2007–2009), local meteorological conditions on the day of peak bird counts were modeled using the Regional Atmospheric Modeling System (RAMS) mesoscale model. Hourly local surface wind speed, wind direction, temperature, pressure and relative humidity were also monitored during these migration periods. Eagle migration flight paths were observed from the ground and converted to three-dimensional tracks using ArcGIS. The observed eagle migration flight paths were compared with the modeled vertical velocity wind fields. Flight tracks across the study area were also simulated using the modeled vertical velocity field in a migration model based on a fluid-flow analogy. It was found that both the large-scale weather conditions and the horizontal wind fields across the study area were broadly similar on each of the modeled migration days. Nonetheless, the location and density of flight tracks across the domain varied between days, with the 2007 event producing more tracks to the southwest of the observation location than the other 2 days. The modeled wind fields suggest that it is not possible for the eagles to traverse the study area without leaving updraft regions, but birds do converge on the locations of updrafts as they move through the area. Statistical associations between observed eagles positions and the vertical velocity field suggest that to the northwest (and to a lesser extent the southwest) of the main study ridge (Johnson col), eagles can always find updrafts but that they must pass through downdraft regions in the NE and SE as they make their way across the study area. Finally, the simulated flight tracks based on the fluid-flow model and the vertical velocity fields are in general agreement with the observed flight track patterns. Our results suggest that use of high resolution meteorological fields to locate the occurrence of updrafts in proposed ridge-line wind installations could aid in predicting, and mitigating for, convergence points in raptor migrations.  相似文献   

18.
ABSTRACT Wind energy development represents significant challenges and opportunities in contemporary wildlife management. Such challenges include the large size and extensive placement of turbines that may represent potential hazards to birds and bats. However, the associated infrastructure required to support an array of turbines—such as roads and transmission lines—represents an even larger potential threat to wildlife than the turbines themselves because such infrastructure can result in extensive habitat fragmentation and can provide avenues for invasion by exotic species. There are numerous conceptual research opportunities that pertain to issues such as identifying the best and worst placement of sites for turbines that will minimize impacts on birds and bats. Unfortunately, to date very little research of this type has appeared in the peer-reviewed scientific literature; much of it exists in the form of unpublished reports and other forms of gray literature. In this paper, we summarize what is known about the potential impacts of wind farms on wildlife and identify a 3-part hierarchical approach to use the scientific method to assess these impacts. The Lower Gulf Coast (LGC) of Texas, USA, is a region currently identified as having a potentially negative impact on migratory birds and bats, with respect to wind farm development. This area is also a region of vast importance to wildlife from the standpoint of native diversity, nature tourism, and opportunities for recreational hunting. We thus use some of the emergent issues related to wind farm development in the LGC—such as siting turbines on cropland sites as opposed to on native rangelands—to illustrate the kinds of challenges and opportunities that wildlife managers must face as we balance our demand for sustainable energy with the need to conserve and sustain bird migration routes and corridors, native vertebrates, and the habitats that support them.  相似文献   

19.
Wind farms have shown a spectacular growth during the last 10 years. As far as we know, this study is the first where the relationship between wind power and birds and small mammals have been considered. Before–after control impact (BACI) study design to birds and Impact Gradient (IG) study design to small mammals to test the null hypothesis of no impact of a wind farm were used. In the BACI model Windfarm Area and a Reference Area were considered. Distance from turbines was considered in the IG model. Windfarm installations did not clearly affect bird and small mammal populations. Flight height of nesting and no nesting birds did not show a clear tendency. Small mammals populations suffered high variations in numbers through times by intrinsic population factors. There are many practical problems of detection of human influence on abundances of populations so sampling in the long run can be suggested.  相似文献   

20.
ABSTRACT For comparing impacts of bird and bat collisions with wind turbines, investigators estimate fatalities/megawatt (MW) of rated capacity/year, based on periodic carcass searches and trials used to estimate carcasses not found due to scavenger removal and searcher error. However, scavenger trials typically place ≥10 carcasses at once within small areas already supplying scavengers with carcasses deposited by wind turbines, so scavengers may be unable to process and remove all placed carcasses. To avoid scavenger swamping, which might bias fatality estimates low, we placed only 1–5 bird carcasses at a time amongst 52 wind turbines in our 249.7-ha study area, each carcass monitored by a motion-activated camera. Scavengers removed 50 of 63 carcasses, averaging 4.45 days to the first scavenging event. By 15 days, which corresponded with most of our search intervals, scavengers removed 0% and 67% of large-bodied raptors placed in winter and summer, respectively, and 15% and 71% of small birds placed in winter and summer, respectively. By 15 days, scavengers removed 42% of large raptors as compared to 15% removed in conventional trials, and scavengers removed 62% of small birds as compared to 52% removed in conventional trials. Based on our methodology, we estimated mean annual fatalities caused by 21.9 MW of wind turbines in Vasco Caves Regional Preserve (within Altamont Pass Wind Resource Area, California, USA) were 13 red-tailed hawks (Buteo jamaicensis), 12 barn owls (Tyto alba), 18 burrowing owls (Athene cunicularia), 48 total raptors, and 99 total birds. Compared to fatality rates estimated from conventional scavenger trials, our estimates were nearly 3 times higher for red-tailed hawk and barn owl, 68% higher for all raptors, and 67% higher for all birds. We also found that deaths/gigawatt-hour of power generation declined quickly with increasing capacity factor among wind turbines, indicating collision hazard increased with greater intermittency in turbine operations. Fatality monitoring at wind turbines might improve by using scavenger removal trials free of scavenger swamping and by relating fatality rates to power output data in addition to rated capacity (i.e., turbine size). The resulting greater precision in mortality estimates will assist wildlife managers to assess wind farm impacts and to more accurately measure the effects of mitigation measures implemented to lessen those impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号