首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

2.
Earlier work from this laboratory led to the proposal that the cytoplasmic pH of streptococcal cells is regulated solely by changes in the amount and activity of a proton-translocating ATPase, F1F0 complex [Kobayashi, H., Suzuki, T. & Unemoto, T. (1986) J. Biol. Chem. 261, 627-630]. We have now examined the proposal with the aid of computer simulation. We find that an increase in the amount of the H+-ATPase is necessary for pH regulation and is sufficient to maintain a constant steady-state cytoplasmic pH. An increase in H+-ATPase activity is insufficient by itself to maintain a constant cytoplasmic pH, but suppresses the initial fluctuation of the pH. When both variations were allowed, the simulated cytoplasmic pH remained constant despite large perturbations, suggesting that this regulatory system has ample capacity to compensate for pH changes. The present work shows that a computer simulation is a useful way to examine a model for biological regulatory system; application of the simulation to other regulatory systems is discussed.  相似文献   

3.
A mutant strain of Escherichia coli carrying a mutation in the uncE gene which codes for the c-subunit of the F1F0-ATPase has been isolated and examined. The mutant allele, designated uncE513, results in alanine at position 25 of the c-subunit being replaced by threonine. The mutant F1F0-ATPase appears to be fully assembled and is partially functional with respect to oxidative phosphorylation. The ATPase activity of membranes from the mutant strain is resistant to the inhibitor dicyclohexylcarbodiimide, but this is due to the F1-ATPase being lost from the membranes in the presence of the inhibitor. Mutant membranes from which the F1-ATPase has been removed have a greatly reduced proton permeability compared with similarly treated normal membranes. The results are discussed in relation to a previously proposed mechanism of oxidative phosphorylation.  相似文献   

4.
A proton-translocating ATPase regulates pH of the bacterial cytoplasm   总被引:29,自引:0,他引:29  
Regulatory mechanisms of cytoplasmic pH in Streptococcus faecalis with no respiratory chain were investigated. In a mutant defective in cytoplasmic alkalization conducted by a proton-translocating ATPase (H+-ATPase), the cytoplasmic pH is approximately 0.4 to 0.5 pH units lower than the medium pH, at pH 5.5 to 9.0. The cytoplasmic pH of the wild-type strain was always higher than that of the mutant at a pH below 8 and was the same as that of the mutant at an alkaline pH over 8. Thus, the cytoplasmic pH is regulated only by the cytoplasmic alkalization, and there is no regulation at alkaline pH in S. faecalis. A generation of the protonmotive force conducted by the H+-ATPase depended on the cytoplasmic pH rather than the medium pH, and the generation decreased rapidly when the cytoplasmic pH was increased over 7.7. The decrease at alkaline pH was not caused by increases in the rate of proton influx. These results suggest that cytoplasmic alkalization is diminished when alkaline pH of the cytoplasm is over 7.7, because of a low activity of proton extrusion by the H+-ATPase, and consequently, the cytoplasmic pH is regulated at about 7.7. The cytoplasmic pH was regulated at a high level in cells that had a high level of H+-ATPase. I conclude that in S. faecalis, the cytoplasmic pH is regulated by H+-ATPase.  相似文献   

5.
Regulation of the vacuolar H(+)-ATPase in organellar and transepithelial acidification has been attributed to the effects of the proton electrochemical gradient across the membrane or to changes in the number of proton pumps. We now report the identification and purification of a protein from bovine kidney cytosol that inhibits both ATPase activity and proton translocating activity of vacuolar H(+)-ATPases. Its relative molecular weight (M(r)) is 6300, similar to that for protein inhibitors of the mitochondrial F0F1-ATPase. The newly identified cytosolic inhibitor protein may participate in the physiologic regulation of the vacuolar H(+)-ATPase by suppressing activity directly.  相似文献   

6.
The mechanism underlying phagosomal acidification was studied in thioglycolate-elicited murine macrophages. The pH of the phagosomal compartment (pHp) was measured fluorimetrically in macrophage suspensions following ingestion of fluorescein isothiocyanate-labeled Staphylococcus aureus. At 37 degrees C, pHp decreased rapidly, reaching a steady state value of 5.8-6.1, while the cytoplasmic pH remained near neutrality, pH 7.1. The phagosome to cytosol pH gradient could be collapsed by addition of nigericin, monensin, or weak bases. The substrate dependence and inhibitor sensitivity profile of phagosomal acidification were investigated in intact and permeabilized cells. Phagosomal acidification was inhibited when ATP was depleted using metabolic inhibitors or permeabilizing the plasma membrane by electroporation. In permeabilized cells, acidification could be initiated by readdition of both Mg2+ and ATP. Neither adenosine 5'-(beta,gamma-imido)triphosphate nor adenosine 5'-(gamma-thio)triphosphate supported phagosomal acidification. Inhibitors of F1F0-type H(+)-ATPase such as oligomycin and azide, and the E1E2-type H(+)-ATPase inhibitor vanadate had no effect on phagosomal acidification. In contrast, the rate of phagosomal acidification was reduced by micromolar concentrations of N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide. In permeabilized cells, nitrate inhibited the acidification with an apparent Ki of 25 mM. Phagosomal acidification was also effectively blocked by the macrolide antibiotic bafilomycin A1, with an apparent Ki of approximately 3 mM in both intact and electroporated cells. In this concentration range, bafilomycin A1 selectively inhibits vacuolar H(+)-ATPases. The substrate requirement and inhibitor susceptibility profile of phagosomal acidification strongly suggest that proton translocation across the phagosomal membrane is mediated by a vacuolar-type H(+)-ATPase.  相似文献   

7.
When Streptococcus faecalis was grown in the presence of protonophores , an ATPase activity of the membrane was increased at a pH below 8.0 but not at a pH above 8.0. Characteristics of this increased ATPase were identical to those of a proton-translocating ATPase (H+-ATPase) located on the membrane of normal cells. The cytoplasmic pH was regulated at 7.6 to 7.8 but was not regulated in the presence of protonophores . The increase in the H+-ATPase was observed when the cytoplasmic pH was lowered to less than 7.6 by the addition of protonophores and was not related to the dissipation of the proton motive force. Thus, we suggest that the H+-ATPase of the membrane is amplified when the cytoplasmic pH is lowered below the pH at which it is regulated under normal conditions.  相似文献   

8.
A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma-32P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors (Ulaszewski, S., Coddington, A., and Goffeau, A. (1986) Curr. Genet. 10, 359-364).  相似文献   

9.
10.
Membrane ghosts were prepared from purified lysosomes (tritosomes) of rat liver by hypo-osmotic treatment. Mg2+-ATP-driven acidification was observed in the membrane ghosts using acridine orange as a fluorescent probe of the transmembrane pH gradient (delta pH). Its properties were the same as those of intact lysosomes reported previously (Ohkuma, S., Moriyama, Y., & Takano, T. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2758-2762; Moriyama, Y., Takano, T., & Ohkuma, S. (1982) J. Biochem. 92, 1333-1336). The H+-pump was found to be electrogenic with use of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol as a fluorescent membrane potential probe. Alkaline Mg2+-ATPase activity was also identified on the membranes. It showed a pH maximum of pH 8.0-8.5, a Km value for ATP of 0.36 mM and a Vmax of 0.41 units/mg protein at 30 degrees C. Its activity was inhibited by dicyclohexylcarbodiimide, tri-n-butyltin, azide and ADP, but not by ouabain or vanadate. It differed from mitochondrial F1F0-ATPase in sensitivities to N-ethylmaleimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin, and oligomycin. Since this alkaline Mg2+-ATPase activity is very similar to the H+-pump activity in its requirement for divalent cations, substrate specificity and sensitivities to various chemicals, it may act as a proton translocase (H+-pump). Possible mechanisms of action of some chemicals, such as 4-acetamide-4'-isothiocyanatostilbene-2,2'-disulfonic acid, that inhibited the H+-pump but not the alkaline Mg2+-ATPase, are discussed.  相似文献   

11.
A yeast nuclear gene (ATP10) is reported whose product is essential for the assembly of a functional mitochondrial ATPase complex. Mutations in ATP10 induce a loss of rutamycin sensitivity in the mitochondrial ATPase but do not affect respiratory enzymes. This phenotype has been correlated with a defect in the F0 sector of the ATPase. The wild type ATP10 gene has been cloned by transformation of an atp 10 mutant with a yeast genomic library. The gene codes for a protein of Mr = 30,293. The primary structure of the ATP10 product is not related to any known subunit of the yeast or mammalian mitochondrial ATPase complexes. To further clarify the role of this new protein in the assembly of the ATPase, an antibody was prepared against a hybrid protein expressed from a trpE/ATP 10 fusion gene. The antibody recognizes a 30-kDa protein present in wild type mitochondria. The protein is associated with the mitochondrial membrane but does not co-fractionate either with F1 or with the rutamycin-sensitive F1-F0 complex. These data suggest that the ATP10 product is not a subunit of the ATPase complex but rather is required for the assembly of the F0 sector of the complex.  相似文献   

12.
V0V1-ATPase is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. We demonstrated recently the rotation of the central stalk subunits in V1, a catalytic sector of V0V1-ATPase (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315), but the rotation of the proteolipid ring, a predicted counterpart rotor in the membrane V0 sector, has remained to be proven. V0V1-ATPase that retained sensitivity to N',N'-dicyclohexylcarbodiimide was isolated from Thermus thermophilus, immobilized onto a glass surface through the N termini of the A subunits of V1, and decorated with a bead attached to a proteolipid subunit of V0. Rotation of beads was observed in the presence of ATP, and direction of rotation was always counterclockwise viewed from the membrane side. The rotation proceeded at approximately 3.0 rev/s in average at 4 mm ATP and was abolished by N',N'-dicyclohexylcarbodiimide treatment. Thus, the rotation of the central stalk in V1 accompanies rotation of a proteolipid ring of V0 in the functioning V0V1-ATPase.  相似文献   

13.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

14.
Natranaerobius thermophilus is an unusual anaerobic extremophile, it is halophilic and alkalithermophilic; growing optimally at 3.3-3.9M Na(+), pH(50°C) 9.5 and 53°C. The ATPase of N. thermophilus was characterized at the biochemical level to ascertain its role in life under hypersaline, alkaline, thermal conditions. The partially purified enzyme (10-fold purification) displayed the typical subunit pattern for F-type ATPases, with a 5-subunit F(1) portion and 3-subunit-F(O) portion. ATP hydrolysis by the purified ATPase was stimulated almost 4-fold by low concentrations of Na(+) (5mM); hydrolysis activity was inhibited by higher Na(+) concentrations. Partially purified ATPase was alkaliphilic and thermophilic, showing maximal hydrolysis at 47°C and the alkaline pH(50°C) of 9.3. ATP hydrolysis was sensitive to the F-type ATPase inhibitor N,N'-dicylohexylcarbodiimide and exhibited inhibition by both free Mg(2+) and free ATP. ATP synthesis by inverted membrane vesicles proceeded slowly and was driven by a Na(+)-ion gradient that was sensitive to the Na(+)-ionophore monensin. Analysis of the atp operon showed the presence of the Na(+)-binding motif in the c subunit (Q(33), E(66), T(67), T(68), Y(71)), and a complete, untruncated ε subunit; suggesting that ATP hydrolysis by the enzyme is regulated. Based on these properties, the F(1)F(O)-ATPase of N. thermophilus is a Na(+)-translocating ATPase used primarily for expelling cytoplasmic Na(+) that accumulates inside cells of N. thermophilus during alkaline stress. In support of this theory are the presence of the c subunit Na(+)-binding motif and the low rates of ATP synthesis observed. The complete ε subunit is hypothesized to control excessive ATP hydrolysis and preserve intracellular Na(+) needed by electrogenic cation/proton antiporters crucial for cytoplasmic acidification in the obligately alkaliphilic N. thermophilus.  相似文献   

15.
A mutant affected in the b subunit (coded by the uncF gene) of the F1F0-ATPase in Escherichia coli was isolated by a localized mutagenesis procedure in which a plasmid carrying the unc genes was mutagenized in vivo. The biochemical properties of cells carrying the uncF515 allele were examined in a strain carrying the allele on a multicopy plasmid and a mutator-induced polar unc mutation on the chromosome. The strain carrying the mutant unc allele was uncoupled with respect to oxidative phosphorylation. Membrane-bound ATPase activity was very low or absent, and membranes were somewhat proton permeable. It was concluded that the F0 sector was assembled. Determination of the DNA sequence of the uncF515 allele showed it differed from wild type in that a G----A substitution occurred at position 392, resulting in glycine being replaced by aspartate at position 131. Genetic complementation tests indicated that the uncF515 allele complemented the uncF476 allele (Gly 9----Asp). Two-dimensional gel electrophoresis of membrane preparations indicated that the uncF515 and uncF476 alleles interrupted assembly of the F1F0-ATPase at different stages.  相似文献   

16.
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.  相似文献   

17.
Two proteinaceous factors, 15K and 9K proteins, which acted together to stabilize the inactivated yeast F1F0-ATPase-inhibitor complex [Hashimoto, T., et al. (1984) J. Biochem. 95, 131-136] were hardly distinguishable from the sigma and epsilon subunits, respectively, of yeast F1-ATPase by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. However, they were clearly distinguishable from these subunits by analyses of the sequences at their amino terminals and by immunoblotting combined with SDS polyacrylamide gel electrophoresis. The two stabilizing factors and an ATPase inhibitor existed in mitochondria in equimolar ratios to F1-ATPase. These three protein factors were not present in purified F1-ATPase or in F1F0-ATPase preparations, but remained in the mitochondrial membranes after extraction of F1F0-ATPase with Triton X-100. These observations strongly suggest that the two stabilizing factors and the ATPase inhibitor form a regulatory substructure of mitochondrial ATP synthase, in addition to the F1 and F0 subunits.  相似文献   

18.
《Biofizika》2005,50(4):680-683
It was shown that the proton conductivity of Enterococcus hirae ATCC9790 membrane increases three times as pH of the growth medium decreases from 8.5 to 5.5. The changes in proton conductivity are interrelated to the values of membrane and redox potentials of the cell, which in turn vary depending on the pH value of growth medium. The energy-dependent H+ efflux for cells fermenting sugar (the glucose) decreases 1.5 times as pH decreases from 8.5 to 5.5; in this case, the N,N'-dicyclohexylcarbodiimide at lower pH values suppresses the H+ efflux more intensively than at higher pH values, the H+ efflux nonsensitive to N,N'-dicyclohexylcarbodiimide being practically unchanged. The H+ efflux in the ATPase mutant MS116 is significantly (approximately 3 times) lower than that in the precursor strain and does not depend on pH. The results show that the proton conductivity of the membrane of this bacterium depends on pH of the growth medium. It is possible that the energy-dependent H+ efflux through F1F0-ATPase is interrelated with membrane proton conductivity.  相似文献   

19.
A previously found yeast-mitochondrial protein fraction stabilizing the inactivated complex between mitochondrial ATPase and intrinsic ATPase inhibitor (Hashimoto, T., et al. (1983) J. Biochem. 94, 715-720) was separated into two proteins by high performance liquid chromatography on a cation exchanger. The molecular weights of the factors were estimated to be 9,000 and 15,000 daltons by sodium dodecyl sulfate (SDS)-gel electrophoresis. Both factors were required to stabilize a complex of inhibitor and proton-translocating ATPase (F1F0-ATPase) either in its purified form or in mitochondrial membranes. On the other hand both factors together could not stabilize a complex of the inhibitor and F1-ATPase, suggesting that both factors act together with the F0-portion. The factors also facilitated very efficiently the binding of ATPase inhibitor to F1F0-ATPase in the presence of ATP and Mg2+. Both the 15,000 and 9,000 dalton stabilizing factors were hardly distinguishable from delta- and epsilon-subunit, respectively, on an SDS-gel electrophoregram, but immuno-diffusion assay showed that neither factor was present in the purified F1-ATPase containing the delta- and epsilon-subunit.  相似文献   

20.
1. F1-ATPase has been extracted by the diphosphatidylglycerol procedure from mitochondrial ATPase complexes that differ in ATPase activity, cold stability, ATPase inhibitor and magnesium content. 2. The ATPase activity of the isolated enzymes was dependent upon the activity of the original particles. In this respect, F1-ATPase extracted from submitochondrial particles prepared in ammonia (pH 9.2) and filtered through Sephadex G-50 was comparable to the enzyme purified by conventional procedures (Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336--1344), whereas F1-ATPase extracted from submitochondrial particles prepared in the presence of magnesium and ATP at neutral pH was similar to factor A (Andreoli, T.E., Lam, K.W. and Sanadi, D.R. (1965) J. Biol. Chem. 240, 2644--2653). 3. No systematic relationship has been found in these F1-ATPase preparations between their ATPase inhibitor content and ATPase activity. Rather, a relationship has been observed between this activity and the efficiency of the ATPase inhibitor-F1-ATPase association within the membrane. 4. It is concluded that the ATPase activity of isolated F1-ATPase reflects the properties of original ATPase complex provided a rapid and not denaturing procedure of isolation is employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号