首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A monoclonal antibody (aRB1C1) raised against an Rb fusion protein detects a limited number (4-10) of relatively large intranuclear foci in an EBV-immortalized cord blood cell line (IB4). These domains also bind an anti-EBNA-5 monoclonal antibody. The Rb antibody reactive sites also co-localize with the SV40 T antigen in transformed monkey cells (COS). The nuclear structures stained by aRB1C1 and EBNA-5 antibodies are distinct from the structures detected with antibodies against centromeric proteins and certain snRNP epitopes. EBNA-5/Rb-positive domains do not selectively react with antibodies against the La antigen known to associate with the small EBV-encoded nuclear RNA species designated as the EBERs.  相似文献   

2.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1.   总被引:25,自引:18,他引:7  
  相似文献   

3.
4.
Based on our recent observation that Epstein-Barr virus (EBV) is detected in 37% of the tissues of hepatocellular carcinoma, and especially frequently in cases with hepatitis C virus (HCV), the effect of EBV infection on the replication of HCV was investigated. EBV-infected cell clones and their EBV-uninfected counterparts in cell lines MT-2 (a human T-lymphotropic virus type I-infected T-cell line), HepG2 (a hepatoblastoma cell line) and Akata (a Burkitt's lymphoma cell line) were compared in terms of their permissiveness for HCV replication following inoculation of HCV derived from patients who were HCV carriers. The results indicated that EBV-infected cell clones, but not their EBV-uninfected counterparts, promoted HCV replication. EBV-encoded nuclear antigen 1 (EBNA1), which is invariably expressed in EBV-infected cells, supported HCV replication. Deletion analysis of the EBNA1 gene showed good correlation between transactivation activity and the activity supporting HCV replication. The present findings suggest that EBV acts as a helper virus for HCV replication.  相似文献   

5.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

6.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

7.
8.
The Epstein-Barr virus thwarts immune surveillance through a Gly-Ala repeat (GAr) within the viral Epstein-Barr virus-encoded nuclear antigen 1 protein. The GAr inhibits proteasome processing, an early step in antigen peptide presentation, but the mechanism of proteasome inhibition has been unclear. By embedding a GAr within ornithine decarboxylase, a natural proteasome substrate that does not require ubiquitin conjugation, we now demonstrate inhibition in a purified system, excluding involvement of ubiquitin conjugation or of proteins extraneous to substrate and proteasome. We show further that the GAr acts as a stop-transfer signal in proteasome substrate processing, resulting in vivo in partial proteolysis that halts just short of the GAr. Similarly, introducing a GAr into green fluorescent protein destabilized by the ornithine decarboxylase degradation domain also stops the progress of proteolysis, leading to the accumulation of partial degradation products. We postulate that the ATP motor of the proteasome slips when it encounters the GAr, impeding further insertion and, in this way, halting degradation.  相似文献   

9.
10.
11.
Human embryonic stem (hES) cells have the capability of unlimited undifferentiated proliferation, yet maintain the potential to form perhaps any cell type in the body. Based on the high efficiency of the Epstein-Barr virus-based episomal vector in introducing exogenous genes of interest into mammalian cells, we applied this system to hES cells, expecting that this would resolve the problem of poor transfection efficiency existing in current hES cell research. Therefore, the first step was to establish EBNA1-positive hES cells. Using the Fugene 6 transfection reagent, we transfected hES cells with the EBNA1 expression vector and subsequently generated hES cell clones that stably expressed EBNA1 under drug selection. These clones were confirmed to express EBNA1 mRNA by RT-PCR and to express EBNA1 protein by Western blotting. Furthermore, luciferase reporter gene analysis was performed on the EBNA1 clones and revealed that the expressed EBNA1 protein was functional. When the EBNA1-positive cells were injected into severe combined immunodeficient (SCID) mice, they formed teratoma tissues containing all three embryonic germ layers and EBNA1 protein was detected in these teratoma tissues by Western blotting. All the results show that we have successfully created stable EBNAI-hES cells, thus laying a good foundation for further research.  相似文献   

12.
Nonproductive infection of B lymphocytes by Epstein-Barr virus (EBV) is associated with a highly restricted expression of viral genes. In growth-transformed lymphoblastoid cell lines, the products of these genes include a complex of at least six EBV nuclear antigens (EBNAs) (EBNA-1 through EBNA-6) and one membrane protein (latent membrane protein [LMP]). EBV-carrying Burkitt's lymphoma (BL) biopsies and derived cell lines that have retained a representative phenotype (group I BL lines) express only EBNA-1 (M. Rowe, D. T. Rowe, C. D. Gregory, L. S. Young, P. J. Farrell, H. Rupani, and A. B. Rickinson, EMBO J. 6:2743-2751, 1987). We have found that EBNA-2 through EBNA-6 and LMP can be up regulated by treating the group I BL line Rael with the DNA-demethylating agent 5-azacytidine (5-AzaC). The drug acted in a time- and dose-dependent manner. EBNA-2-positive cells were detected by anti-complement immunofluorescence staining just 12 h after addition of 4 microM 5-AzaC and reached a maximum number at 72 h, when up to 75% of the population was positive. EBNA-2, EBNA-3, EBNA-4, EBNA-4, EBNA-6, and LMP were demonstrated immunoblots starting at 48 h. The EBV-encoded early antigens and viral capsid antigens were also induced but at a lower level. EBNA-2 and the lytic cycle-associated antigens appeared with a different time course and in largely nonoverlapping cell subpopulations, as demonstrated by double fluorescence staining. Thus, EBNA-2 expression was not restricted to lytically infected cells, nor was EBNA-2 required for entry into the lytic cycle. The coding and regulatory sequences of EBNA-2 and LMP were found to be highly methylated in Rael cells and were, as expected, demethylated after 5-AzaC treatment. These findings suggest that DNA methylation may participate in the regulation of growth transformation-associated viral genes in BL cells.  相似文献   

13.
J Finke  M Rowe  B Kallin  I Ernberg  A Rosn  J Dillner    G Klein 《Journal of virology》1987,61(12):3870-3878
The Epstein-Barr virus nuclear antigen 5 (EBNA-5) is encoded by highly spliced mRNA from the major IR1 (BamHI-W) repeat region of the virus genome. A mouse monoclonal antibody, JF186, has been raised against a synthetic 18-amino-acid peptide deduced from the EBNA-5 message of B95-8 and Raji cells. The antibody showed characteristic coarse nuclear granules by indirect immunofluorescence and revealed multiple EBNA-5 species by immunoblotting and immunoprecipitation. The B95-8 line itself and all B95-8 virus-carrying cells, whether lymphoblastoid cell lines or in vitro-converted sublines of Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) lines, were EBNA-5 positive. Among 36 cell lines carrying different EBV strains, only 10 expressed the B95-8-Raji-prototype EBNA-5 recognized by JF186; this was probably due to genetic variation in the epitope recognized by JF186, as shown for P3HR-1. Human antibodies, affinity purified against EBNA-5-JF186 immunoprecipitates, detected EBNA-5 in the majority of EBV-positive BL lines and in all lymphoblastoid cell lines containing the BL-derived viruses. Thus, EBNA-5 can be expressed by all virus isolates examined, but is down-regulated, together with other latent gene products, in a minority of BL lines which have a particular cellular phenotype. EBNA-5 was detected as a ladder of protein species of 20 to 130 kilodaltons (kDa), with a regular spacing of 6 to 8 kDa, consistent with the coding capacity of the combined BamHI-W 66- and 132-base-pair exons, together with shifts of 2 to 4 kDa, consistent with the size of the separate 66- and 132-base-pair exons. Multiple EBNA-5 proteins can be expressed by the single cell as shown by cloning of newly infected cells.  相似文献   

14.
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.  相似文献   

15.
Latent Epstein-Barr virus (EBV) infection is strongly associated with several cancers, including nasopharyngeal carcinoma (NPC), a tumor that is endemic in several parts of the world. We have investigated the molecular basis for how EBV latent infection promotes the development of NPC. We show that the viral EBNA1 protein, previously known to be required to maintain the EBV episomes, also causes the disruption of the cellular PML (promyelocytic leukemia) nuclear bodies (or ND10s). This disruption occurs both in the context of a native latent infection and when exogenously expressed in EBV-negative NPC cells and involves loss of the PML proteins. We also show that EBNA1 is partially localized to PML nuclear bodies in NPC cells and interacts with a specific PML isoform. PML disruption by EBNA1 requires binding to the cellular ubiquitin specific protease, USP7 or HAUSP, but is independent of p53. We further observed that p53 activation, DNA repair and apoptosis, all of which depend on PML nuclear bodies, were impaired by EBNA1 expression and that cells expressing EBNA1 were more likely to survive after induction of DNA damage. The results point to an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of PML nuclear bodies promotes the survival of cells with DNA damage.  相似文献   

16.
17.
18.
19.
We identified an Epstein-Barr virus (EBV) gene product which functions in transient-expression assays as a nonspecific trans activator. In Vero cells, cotransfection of the BglII J DNA fragment of EBV together with recombinant constructs containing the bacterial chloramphenicol acetyltransferase (CAT) gene gave up to a 100-fold increased expression of CAT activity over that in cells transfected with the recombinant CAT constructs alone. The BglII J fragment acted promiscuously, in that increased CAT synthesis was observed regardless of whether the promoter sequences driving the CAT gene were of EBV, simian virus 40, adenovirus, or herpes simplex virus origin. Cleavage of cloned BglII-J plasmid DNA before transfection revealed that activation was dependent upon the presence of an intact BMLF1 open reading frame. This was confirmed with subclones of BglII-J and with hybrid promoter-open reading frame constructs. This region of the genome is also present in the rearranged P3HR-1-defective DNA species, and defective DNA clones containing these sequences produced a similar activation of CAT expression in cotransfection experiments. The heterogeneous 45-60-kilodalton polypeptide product of BMLF1 may play an important regulatory role in expression of lytic-cycle proteins in EBV-infected lymphocytes.  相似文献   

20.
Latently infected B lymphocytes continuously express an Epstein-Barr Virus nuclear antigen (EBNA-1) required in trans for maintenance of the plasmid state of the EBV genome. Filter binding assays and DNAase I footprinting analyses revealed that the carboxy-terminal domain of EBNA-1 protects binding sites at three different loci in the 172,000 bp EBV genome. Two of these loci correspond to essential elements within an 1800 bp segment defined as the minimal region required for plasmid maintenance (ori-P). Binding to each of 20 X 30 bp tandem repeats in the "sink" locus protects 25 bp centered over a 12 bp palindromic consensus sequence TAGCATATGCTA. The nearby dyad symmetry "origin" locus contains two 46 bp protected regions each encompassing two paired core binding sites. The demonstration of sequence-specific binding at multiple loci suggests that EBNA-1 has pleiotropic functions, which may include control of copy number and segregation of the EBV plasmids as well as initiation of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号