首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

2.
Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric alpha-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distributed during interphase, little is known of what determines the three-dimensional organization of these silencing domains in the nucleus. Here, we propose a model that predicts the intranuclear positioning of centromeric heterochromatin for each individual chromosome. With the use of fluorescence in situ hybridization and confocal microscopy, we show that the distribution of centromeric alpha-satellite DNA in human lymphoid cells synchronized at G(0)/G(1) is unique for most individual chromosomes. Regression analysis reveals a tight correlation between nuclear distribution of centromeric alpha-satellite DNA and the presence of G-dark bands in the corresponding chromosome. Centromeres surrounded by G-dark bands are preferentially located at the nuclear periphery, whereas centromeres of chromosomes with a lower content of G-dark bands tend to be localized at the nucleolus. Consistent with the model, a t(11; 14) translocation that removes G-dark bands from chromosome 11 causes a repositioning of the centromere, which becomes less frequently localized at the nuclear periphery and more frequently associated with the nucleolus. The data suggest that "chromosomal environment" plays a key role in the intranuclear organization of centromeric heterochromatin. Our model further predicts that facultative heterochromatinization of distinct genomic regions may contribute to cell-type specific patterns of centromere localization.  相似文献   

3.
T Haaf  P E Warburton  H F Willard 《Cell》1992,70(4):681-696
Centromeres of mammalian and other complex eukaryotic chromosomes are dominated by one or more classes of satellite DNA. To test the hypothesis that alpha-satellite DNA, the major centromeric satellite of primate chromosomes, is involved in centromere structure and/or function, human alpha-satellite DNA was introduced into African green monkey (AGM) cells. Centromere protein binding was apparent at the sites of integrated human alpha-satellite DNA. In the presence of an AGM centromere on the same chromosome, human alpha-satellite was associated with bridges between the separating sets of chromatids at anaphase and an increased number of lagging chromosomes at metaphase, both features consistent with the integrated alpha-satellite disrupting normal chromosome segregation. These experiments suggest that alpha-satellite DNA provides the primary sequence information for centromere protein binding and for at least some functional aspect(s) of a mammalian centromere, playing a role either in kinetochore formation or in sister chromatid apposition.  相似文献   

4.
The centromeric alpha-satellite DNA subfamilies from chromosomes 13 and 21 are almost identical in sequence. So far it has proven difficult to discriminate between sequence variations in the chromosome 13 and 21 alpha-satellite regions using in situ techniques. To analyze whether the method of modified single-color and double-color PRINS could be used to detect single nucleotide polymorphisms within this region, we used previously published primers D13Z and D21Z that differ in the terminal 3'-nucleotide and an additionally constructed primer "D13/21-test" lacking the final nucleotide at the 3' end. The results show that a one-base pair mismatch at the 3' end is sufficient to be detected by PRINS. Surprisingly, only about 35% of our samples exhibited the expected combination of two chromosomes 13 specifically labeled with only primer D13Z and two chromosomes 21 specifically labeled with only primer D21Z. The rest of the samples showed a polymorphic distribution of the target sequence for the primers, therefore these primers are not suited for routine detection of chromosomes 13 and 21 during interphase. Our data indicate that an interchromosomal exchange of alpha-satellite DNA takes place between chromosomes 13 and 21, possibly due to a concerted evolution process.  相似文献   

5.
A number of applied molecular cytogenetic studies require the quantitative assessment of fluorescence in situ hybridization (FISH) signals (for example, interphase FISH analysis of aneuploidy by chromosome enumeration DNA probes; analysis of somatic pairing of homologous chromosomes in interphase nuclei; identification of chromosomal heteromorphism after FISH with satellite DNA probes for differentiation of parental origin of homologous chromosome, etc.). We have performed a pilot study to develop a simple technique for quantitative assessment of FISH signals by means of the digital capturing of microscopic images and the intensity measuring of hybridization signals using Scion Image software, commonly used for quantification of electrophoresis gels. We have tested this approach by quantitative analysis of FISH signals after application of chromosome-specific DNA probes for aneuploidy scoring in interphase nuclei in cells of different human tissues. This approach allowed us to exclude or confirm a low-level mosaic form of aneuploidy by quantification of FISH signals (for example, discrimination of pseudo-monosomy and artifact signals due to over-position of hybridization signals). Quantification of FISH signals was also used for analysis of somatic pairing of homologous chromosomes in nuclei of postmortem brain tissues after FISH with "classical" satellite DNA probes for chromosomes 1, 9, and 16. This approach has shown a relatively high efficiency for the quantitative registration of chromosomal heteromorphism due to variations of centromeric alphoid DNA in homologous parental chromosomes. We propose this approach to be efficient and to be considered as a useful tool in addition to visual FISH signal analysis for applied molecular cytogenetic studies.  相似文献   

6.
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.  相似文献   

7.
The evolution of chromosomes in species in the family Bovidae includes fusion and fission of chromosome arms (giving different numbers of acrocentric and metacentric chromosomes with a relatively conserved total number of arms) and evolution in both DNA sequence and copy number of the pericentromeric alpha-satellite I repetitive DNA sequence. Here, a probe representing the sheep alpha-satellite I sequence was isolated and hybridized to genomic DNA digests and metaphase chromosomes from various Bovidae species. The probe was highly homologous to the centromeric sequence in all species in the tribe Caprini, including sheep (Ovis aries), goat (Capra hircus) and the aoudad or Barbary sheep (Amnotragus lervia), but showed no detectable hybridization to the alpha-satellite I sequence present in the tribe Bovini and at most very weak to species in the tribes Hippotragini, Alcelaphini or Aepycerotini. The sex chromosomes of sheep, goat and aoudad did not contain detectable alpha-satellite I sequence; in sheep, one of the three metacentric autosomal chromosomes does not carry the sequence, while in aoudad, it is essentially absent in three large autosomal pairs as well as the large metacentric chromosome pair. The satellite probes can be used as robust chromosome and karyotype markers of evolution among tribes and increase the resolution of the evolutionary tree at the base of the Artiodactyla.  相似文献   

8.
Meiotic segregation, recombination, and aneuploidy was assessed for sperm from a t(1;10)(p22.1;q22.3) reciprocal translocation carrier, by use of two multicolor FISH methods. The first method utilized three DNA probes (a telomeric and a centromeric probe on chromosome 1 plus a centromeric probe on chromosome 10) to analyze segregation patterns, in sperm, of the chromosomes involved in the translocation. The aggregate frequency of sperm products from alternate and adjacent I segregation was 90.5%, and the total frequency of normal and chromosomally balanced sperm was 48.1%. The frequencies of sperm products from adjacent II segregation and from 3:1 segregation were 4.9% and 3.9%, respectively. Reciprocal sperm products from adjacent I segregation deviated significantly from the expected 1:1 ratio (P < .0001). Our assay allowed us to evaluate recombination events in the interstitial segments at adjacent II segregation. The frequencies of sperm products resulting from interstitial recombination in chromosome 10 were significantly higher than those resulting from interstitial recombination in chromosome 1 (P < .006). No evidence of an interchromosomal effect on aneuploidy was found by use of a second FISH method that simultaneously utilized four chromosome-specific DNA probes to quantify the frequencies of aneuploid sperm for chromosomes X, Y, 18, and 21. However, a significant higher frequency of diploid sperm was detected in the translocation carrier than was detected in chromosomally normal and healthy controls. This study illustrates the advantages of multicolor FISH for assessment of the reproductive risk associated with translocation carriers and for investigation of the mechanisms of meiotic segregation of chromosomes.  相似文献   

9.
Early diagnosis is very important in pre- and postnatal diagnosis of Down syndrome. This study examines the use of fluorescence in situ hybridization (FISH) to detect trisomy 21 in interphase nuclei and metaphase chromosome obtained from fifty-four Down syndrome patients with a regular type trisomy 21. Three of them showed six hybridization signals on both interphase nuclei and metaphase spreads instead of five signals corresponding to two chromosomes 13 and three chromosomes 21 although they were cytogenetically trisomy 21. Simultaneous application of probe combination revealed that one of the extra signals of chromosomes 13/21 a-satellite probe was located on chromosome 22 in two cases and one extra signal on chromosomes 15 in one case. In addition, another case showed four hybridization signals on both interphase nuclei and metaphase spreads instead of five signals, indicating deletion of the chromosome specific alpha-satellite DNA sequence of chromosome 13/21. These centromeric sequence changes may have pathological significance in the appearance of aneuploidy because they may be involved in the important centromere function.  相似文献   

10.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

11.
12.
Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.  相似文献   

13.
The homology of DNA of C-positive centromeric regions of chromosomes in wood mice of the genus Sylvaemus (S. uralensis, S. fulvipectus, S. sylvaticus, S. flavicollis, and S. ponticus) was estimated for the first time. DNA probes were generated by microdissection from the centromeric regions of individual autosomes of each species, and their fluorescence in situ hybridization (FISH) with metaphase chromosomes of representatives of all studied wood mouse species was carried out. Unlike in the chromosomal forms and races of S. uralensis, changes in the DNA composition of the chromosomal centromeric regions in the wood mouse species of the genus Sylvaemus (including closely related S. flavicollis and S. ponticus) are both quantitative and qualitative. The patterns of FISH signals after in situ hybridization of the microdissection DNA probes with chromosomes of the species involved in the study demonstrate significant differences between C-positive regions of wood mouse chromosomes in the copy number and the level of homology of repetitive sequences as well as in the localization of homologous repetitive sequences. It was shown that C-positive regions of wood mouse chromosomes can contain both homologous and distinct sets of repetitive sequences. Regions enriched with homologous repeats were detected either directly in C-positive regions of individual chromosomes or only on the short arms of acrocentrics, or at the boundary of C-positive and C-negative regions.  相似文献   

14.
15.
Using classical cytogenetic techniques, we detected a male patient with monosomy 18p/trisomy 20p, originating from a paternal reciprocal translocation of the short arms of chromosomes 18 and 20. To characterize the breakpoints further and to determine the centromeric origin of the chromosomes involved, we analyzed the metaphase chromosomes by fluorescence in situ hybridization using -satellite DNA probes specific to chromosomes 18 and 20. With this approach, we showed that -satellite centromeric fragments were involved in the translocation event and that the chromosome-18-specific centromeric sequences were split into two. Analysis of 14 family members from four generations revealed nine phenotypically normal individuals carrying this reciprocal translocation. These results suggest that breaks in -satellite DNA fragments neither impair the centromeric function nor have clinical effects.  相似文献   

16.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

17.
A patient with the CREST syndrome of scleroderma was found to carry a mosaicism for a supernumerary microchromosome. The microchromosome was approximately 1 micron in size and present in over half of the lymphocyte metaphases examined. It bound centromeric proteins specifically recognized by CREST autoimmune sera (including the patient's serum). In situ hybridization with a panel of chromosome-specific alpha-satellite probes showed that the microchromosome was derived from chromosome 11, most or all of its chromatin consisting of the chromosome 11 subset of alpha-satellite DNA. It had no detectable telomeric sequences. Microchromosomes observed by electron microscopy had no visible free ends. The chromatin looked exactly the same as it did in normal chromosomes. Although we have no direct evidence for a circular structure, we conclude that the microchromosome originated by an interstitial deletion including the alpha-satellite DNA sequences and subsequent ring formation. The newly formed chromosomal element proved to be relatively stable somatically and was transmitted through meiosis. Since it possesses at least some structural and functional features of a centromeric region, the microchromosome can be thought of as an isolated centromere.  相似文献   

18.
Cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes of high specificity to individual chromosomes (chromosomes 3, 11, 17, 18 and X) were hybridized in situ to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in definite heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The significant interindividual differences in relative copy number of alpha-satellite DNA have been detected. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms, as shown by intensity of hybridization with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences gives evidence for a high resolution power of in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes is variable for amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as novel general approach to analysis of chromosome heteromorphisms in man.  相似文献   

19.
Structural chromosome abnormalities in spermatozoa represent an important category of paternally transmittable genetic damage. A couple was referred to our centre because of repetitive abortions and the man was found to be a carrier of a reciprocal translocation t(3;11)(q27.3;q24.3). A tailored fluorescence in situ hybridisation (FISH) approach was developed to study the meiotic segregation patterns in spermatozoa from this translocation carrier. A combination of three DNA probes was used, a centromeric probe for chromosome 11, a cosmid probe for chromosome 11q and a YAC probe for chromosome 3q. The frequency of spermatozoa carrying an abnormal chromosome constitution was compared with baseline frequencies in control semen specimens and it was found that a significantly higher percentage of spermatozoa carried an abnormal constitution for the chromosomes involved in the translocation. A normal or balanced chromosome constitution was found in 44.3% of the analysed spermatozoa, while the remainder exhibited an abnormal chromosome constitution reflecting different modes of segregation (15.9% adjacent I segregation, 6.5% adjacent II segregation, 28.9% 3 : 1 segregation, 0.8% 4 : 0 segregation, 3.6% aberrant segregation). The frequency of aneuploidy for chromosomes X, Y, 13 and 21 was assessed using specific probes but there was no evidence of interchromosomal effects or variations in the sex ratio in spermatozoa from the translocation carrier. In conclusion, structural aberrations can be reliably assessed in interphase spermatozoa using unique DNA probe cocktails, and this method provides insight into the genetic constitution of germ cells and enables evaluation of potential risks for the offspring. Received: 19 September 1997 / Accepted: 27 October 1997  相似文献   

20.
We present a novel method, based on the hybridization of allele-specific oligonucleotide probes, that allows the specific detection of chromosome 21 alpha-satellite sequences. Absence of informative polymorphic markers from the centromeric region of chromosome 21 has constituted one of the difficulties in studying the centromere of this chromosome. The alpha-satellite subfamilies from chromosomes 21 and 13 are almost identical in sequence and thus cannot be distinguished using conventional hybridization techniques. Analysis using nuclear families showed that the centromeric polymorphism, detected using our specific probe and pulsed-field gel restriction analysis, segregates in a Mendelian fashion and exhibits a high degree of polymorphism among unrelated individuals. The alphoid DNA of chromosome 21 is highly polymorphic, useful not only as a definitive anchor for the genetic map, but also for studies of chromosome 21 nondisjunction, including the unequivocal assignment of meiotic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号