首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to compare the physiological and the subjective responses to low relative humidity of elderly and young men, we measured saccharin clearance time (SCT), frequency of blinking, hydration state of the skin, transepidermal water loss (TEWL), sebum level recovery and skin temperatures as physiological responses. We asked subjects to evaluate thermal, dryness and comfort sensations as subjective responses using a rating scale. Eight non-smoking healthy male students (21.7+/-0.8 yr) and eight non-smoking healthy elderly men (71.1+/-4.1 yr) were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test-room conditions were adjusted to provide 25 degrees C Ta and RH levels of 10%, 30% and 50%. RH had no effect on the activity of the sebaceous gland or change of mean skin temperature. SCT of the elderly group under 10% RH was significantly longer than that of the young group. In particular, considering the SCT change, the nasal mucous membrane seems to be affected more in the elderly than in the young in low RH. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain greater than 30% RH, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain greater than 10% RH. On the thermal sensation of the legs, at the lower humidity level, the elderly group felt cooler than the young group. On the dry sensation of the eyes and throat, the young group felt drier than the elderly group at the lower humidity levels. From the above results, the elderly group had difficulty in feeling dryness in the nasal mucous membrane despite being easily affected by low humidity. On the other hand, the young group felt the change of humidity sensitively despite not being severely affected by low humidity. Ocular mucosa and physiology of skin by dryness showed no difference by age. In the effect of longer exposure (180 min.) to low RH, only TEWL showed a slight decrease after 120 minutes in 30% RH, and all the measured results showed no noticeable differences compared with the result at 120 minutes.  相似文献   

2.
Persistence of anhydrous organisms in nature may depend on howlong they remain viable in dry environments. Longevity is determinedby interactions of humidity, temperature, and unknown cellularfactors that affect the propensity for damaging reactions. Herewe describe our research to elucidate those cellular factorsand to ultimately predict how long a population can surviveunder extreme conditions. Loss of viability typically followsa sigmoidal pattern, where a period of small changes precedesa cataclysmic decline. The time for viability to decrease to50% (P50) varied among seed species and among 10 phylogeneticallydiverse organisms. When stored at elevated temperatures of 35°Cand 32% relative humidity (RH), P50 ranged from about a weekfor spores of Serratia marcescens to several years for frondsof Selaginella lepidophylla. Most of the species studied survivedlongest at low humidity (10–20% RH), but suffered undercomplete dryness. Temperature dependencies of aging kineticsappeared similar among diverse organisms despite the disparatelongevities. The effect of temperature on seed aging rates wasconsistent with the temperature dependency of molecular mobilityof aqueous glasses, with both showing a reduction by severalorders of magnitude when seeds were cooled from 60°C to0°C. Longevity is an inherited trait in seeds, but its complexexpression among widely divergent taxa suggests that it developedthrough multiple pathways.  相似文献   

3.
This study sought to investigate the effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans. The subjects were eight healthy males, from whom informed consent had been obtained. The experiments were carried out under three different sets of conditions: a control climate [air temperature (Ta)=26°C, relative humidity (RH)=50%] (C); a humid heat climate (Ta=32°C, RH=80%) (H); and a humid heat exposure in later sleep segments (C for the first 3 h 45 min, followed by a 30-min transition to H, which was then maintained for the last 3 h 45 min) (C–H). Electroencephalogram, EOG, and mental electromyogram, rectal temperature (Tre), and skin temperature (Tsk) were continuously measured. The total amount of wakefulness was significantly increased in H compared to C–H or C. Compared to C, wakefulness in C–H and H was significantly increased during later sleep segments. Tre and mean Tsk were significantly higher in H than in C–H or C. In C–H, Tsk and Tre increased to levels equal to those observed in H after Ta and RH increase. Whole body sweat loss was significantly lower in C–H and C than in H. These results suggest that humid heat exposure in the later sleep segment reduces thermal load as compared to full-night humid heat exposure. In daily life, the use of air conditioning in the initial sleep hours can protect sleep and thermoregulation.  相似文献   

4.
亚高温下不同空气湿度对番茄光合作用和物质积累的影响   总被引:1,自引:0,他引:1  
为了研究亚高温下不同空气湿度对番茄植株光合作用及物质积累的影响,本试验利用人工气候室,在11:00—15:00平均温度为33℃的亚高温条件下,设置3个空气相对湿度处理,分别为70%~80%(高湿)、50%~60%(中湿)和不加湿的30%~40%(低湿)。结果表明:在处理25d时,高湿处理番茄叶片叶绿素含量、净光合速率显著高于低湿处理,而低湿处理果实空洞率比高湿处理高18.4%(P<0.05);在33℃亚高温条件下,70%~80%的相对湿度有利于光合作用的增强和果实品质的提高。  相似文献   

5.
用荧光染色法研究了不同温度(10~30℃)和湿度(51~100%RH)组合条件下飞虱虫疠 霉 Pandora delphacis分生孢子的存活率。在无放回抽样观察中,孢子弹射后第24 h的存活 率在51%、74%、85%、90%、95%和100%RH与不同温度的组合中分别为42~81%、69~89%、70~ 95%、 67~100%、 76~100%和 56~100%。存放4个月后,不同温度下的孢子存活率在 51%、 74%、 85%和 90%RH下分别为 55~74%、 52~87%、 38~73%和 1~65%。而在≥95% RH下孢子存活率 24h 后锐减,至第7 d几乎全部失活。以上结果表明,弹射后的飞虱虫疠霉孢子在头24 h的存活 易受低湿影响,但存活下来的孢子能继续在低湿下存活较久;饱和或接近饱和的高湿度最不 利孢子长久存活。  相似文献   

6.
Dynamics of sweating and water loss distribution were studied in 7 exercising men under thermoneutral conditions (Ta, 25 degrees C; Tw, 24 degrees C and RH, 54%) and during moderate heat exposure (Ta, 30 degrees C; Tw, 30 degrees C; RH, 54%). The subjects performed bicycle exercise at intensity of 50% V O2 max. Dynamics of sweating was greater after heat exposure (delay in onset of sweating 3.6 and 1.4 min, p less than 0.05; time constant 10.1 and 7.3 min, p less than 0.02). The dynamics of sweating was related to the net body heat load (r = -0.80, p less than 0.001). Sweat evaporation from the skin (Esk) was significantly higher in heat exposed exercising subjects while dripping sweat (mdrip) did not differ significantly. Water loss distribution in relation to total water loss during control exercise was as follows: (Ediff + Eres) 14.8% (Esk) 59.6%; and (mdrip) 25.6%. During exercise under heat exposure (Ediff + Eres) was 12.1%; (Esk) was 67.5%; and (mdrip) was 20.4%. It is concluded that moderate heat exposure accelerate sweating reaction but does not change significantly water loss distribution in exercising subjects. Dripping sweat seems to be an attribute of sweating not only in hot humid conditions but also under temperate temperature and air humidity.  相似文献   

7.
A study was made to determine the effects of temperature and moisture on the D-value of a common biological indicator. Relative humidity (RH) was varied between 10 and 70% in increments of 10%, and temperature was varied between 30 and 70 degrees C in increments of 10 degrees C. Temperature was found to have a pronounced effect on the D-value. At 60% RH, the D-value varied from 15.0 min at 30 degrees C to 1.1 min at 70 degrees C. When RH was plotted against the average D-value at the various temperatures, the temperature curves at or above 50 degrees C were more erratic and the RH had a significant effect. The study showed that temperature and RH must be controlled if biological indicators are to be properly calibrated for use in ethylene oxide sterilization.  相似文献   

8.
To assess the ability of the nose to warm and humidify inhaled air, we developed a nasopharyngeal probe and measured the temperature and humidity of air exiting the nasal cavity. We delivered cold, dry air (19-1 degrees C, <10% relative humidity) or hot, humid air (37 degrees C, >90% relative humidity) to the nose via a nasal mask at flow rates of 5, 10, and 20 l/min. We used a water gradient across the nose (water content in nasopharynx minus water content of delivered air) to assess nasal function. We studied the characteristics of nasal air conditioning in 22 asymptomatic, seasonally allergic subjects (out of their allergy season) and 11 nonallergic normal subjects. Inhalation of hot, humid air at increasingly higher flow rates had little effect on both the relative humidity and the temperature of air in the nasopharynx. In both groups, increasing the flow of cold, dry air lowered both the temperature and the water content of the inspired air measured in the nasopharynx, although the relative humidity remained at 100%. Water gradient values obtained during cold dry air challenges on separate days showed reproducibility in both allergic and nonallergic subjects. After exposure to cold, dry air, the water gradient was significantly lower in allergic than in nonallergic subjects (1,430 +/- 45 vs. 1,718 +/- 141 mg; P = 0.02), suggesting an impairment in their ability to warm and humidify inhaled air.  相似文献   

9.
A physiological strain index (PSI) based on heart rate (HR) and rectal temperature (Tre) was recently suggested to evaluate exercise-heat stress in humans. The purpose of this study was to adjust PSI for rats and to evaluate this index at different levels of heat acclimation and training. The corrections of HR and Tre to modify the index for rats are as follows: PSI = 5 (Tre t - Tre 0). (41.5 - Tre 0)-1 + 5 (HRt - HR0). (550 - HR0)-1, where HRt and Tre t are simultaneous measurements taken at any time during the exposure and HR0 and Tre 0 are the initial measurements. The adjusted PSI was applied to five groups (n = 11-14 per group) of acclimated rats (control and 2, 5, 10, and 30 days) exposed for 70 min to a hot climate [40 degrees C, 20% relative humidity (RH)]. A separate database representing two groups of acclimated or trained rats was also used and involved 20 min of low-intensity exercise (O2 consumption approximately 50 ml. min-1. kg-1) at three different climates: normothermic (24 degrees C, 40% RH), hot-wet (35 degrees C, 70% RH), and hot-dry (40 degrees C, 20% RH). In normothermia, rats also performed moderate exercise (O2 consumption approximately 60 ml. min-1. kg-1). The adjusted PSI differentiated among acclimation levels and significantly discriminated among all exposures during low-intensity exercise (P < 0.05). Furthermore, this index was able to assess the individual roles played by heat acclimation and exercise training.  相似文献   

10.
目的:研究Buserelin原料药的性质在温度、湿度、光线等条件的影响下随时间变化的规律,为该原料药的生产、包装、储存、运输及有效期的制定提供依据。方法:根据中国药典2005版二部附录XIX C药物稳定性试验指导原则及化学药物稳定性研究技术指导原则进行强光照射、高温(60℃、40℃)、高湿(RH92.5%±5%、RH75%±5%)影响因素试验,加速试验(40℃±2℃、RH75%±5%;25℃±2℃、RH60%±10%);按Buserelin原料药标准规定的质量指标及相关的检验方法对产品在试验条件下的主要质量指标进行检测。结果:强光照射、高温、高湿等影响因素对Buserelin的稳定性有明显影响,故应密封、于干燥、阴凉处保存。在加速试验中,Buserelin原料药的各项质量指标发生了小的变化,但均在质量标准规定的范围内。结论:强光照射、高温、高湿等影响因素对Buserelin的稳定性有明显影响,应在阴凉干燥处避光密封保存和运输。加速试验结果证明:在此条件下,它的各项质量指标变化均在质量标准范围内,符合Buserelin原料药质量标准规定的要求;故将其保质期暂定为两年。  相似文献   

11.
Among fluctuations of instantaneous heart rate (IHR) in newly hatched chicks, heart rate (HR) oscillation with a mean frequency of 0.7 Hz has been designated as Type II HR variability characterized by low frequency (LF) oscillation [Comp. Biochem. Physiol. Part A 124 (1999) 461]. In response to exposure to lowered ambient temperature (Ta), chick hatchlings raised their HR baseline accompanied with the production or augmentation of Type II HR oscillation, indicating that LF oscillation is a phenomenon relating to thermoregulation [J. Therm. Biol. 26 (2001) 281]. In emu hatchlings that are precocial like chickens, Type II HR oscillation also occurred, but less frequently in comparison with chick hatchlings [Comp. Biochem. Physiol. Part A 131 (2002) 787]. This present experiment was conducted to elucidate how IHR of emu hatchlings responds to changes in Ta. Six hatchlings were measured for IHR and skin temperature (Ts) during a 3-h period when they were exposed to controlled Ta (ca. 35 degrees C), lowered Ta (ca. 15-30 degrees C) and again the controlled Ta for individual 1-h periods. In response to all the cooling and re-warming procedures, HR baseline changed depending upon the intensity of the Ta differences; i.e. large differences of Ta produced large changes in HR. HR fluctuations tended to augment during cooling with a few exceptions, but LF oscillation was not produced. Thus, LF oscillation, which was scarce even at the controlled Ta, could not be used as a thermoregulatory indicator in emus.  相似文献   

12.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

13.
The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5°C, 10°C, 20°C and 25°C at three humidity levels in the range 69–95% RH over 4–7 months. The lower limit for fungal growth on wood, wood composites and starch-containing materials was 78% RH at 20–25°C and increased to 90% RH at 5°C. An RH of 86% was necessary for growth on gypsum board. Ceramic materials supported growth at RH >90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities of metabolites were insignificant compared with those produced at high RH (RH >95%), except in the case of Eurotium.  相似文献   

14.
The hygropreference of adult Cryptopygus antarcticus and Alaskozetes antarcticus was investigated over 2 h at 5, 10 and 20 degrees C, along humidity gradients (9-98% RH) established by means of different salt solutions. Two chamber arrangements were employed, linear and grid, to determine any influence of thigmotactic behaviour on distribution within the RH gradient. The humidity preference of both species varied with temperature. At 5 and 10 degrees C, C. antarcticus distributed homogeneously showing no clear RH preference. At 20 degrees C, this species preferred the highest humidity (98% RH). A. antarcticus demonstrated a preference for the lowest humidity (9% RH) at 5 degrees C, but at 10 degrees C its distribution differed between the two arena types. At 20 degrees C, A. antarcticus showed no clear humidity preference. Assays to control for experimental asymmetries along the gradient; thigmotactic behaviour; and aggregative behaviour exclude these factors as explanations for the observed results. The mean initial water content of samples did not differ significantly between temperature regimes (C. antarcticus: 68.6, 71.1 and 74.3%; A. antarcticus: 68.1, 70.1 and 68.6% at 5, 10 and 20 degrees C respectively), but the level of water loss increased significantly with temperature. The influence of desiccation tolerance and the ecological significance of the observed humidity preferences are discussed.  相似文献   

15.
《Journal of Asia》2020,23(2):606-611
Frankliniella occidentalis (Pergande) is a major insect pest of greenhouse crops such as leaf vegetables, flowers and vegetable fruits worldwide. The life history characteristics of F. occidentalis were investigated at control temperature and humidity (27.3 ± 0.54 °C, 79.9 ± 2.79% RH) (mean ± SD), a 10 °C-range fluctuation in temperature (27.1 ± 5.28 °C, 81.5 ± 4.03% RH), a 20 °C-range fluctuation in temperature (26.5 ± 10.09 °C, 80.4 ± 5.76% RH), a 20%-range fluctuation in humidity (26.8 ± 0.37 °C, 80.7 ± 9.55% RH) and a 30%-range fluctuation in humidity (27.3 ± 0.41 °C, 76.3 ± 15.28% RH). Overall, the life history traits of F. occidentalis were more negatively affected by fluctuating environmental conditions. The impact of temperature fluctuation was more severe than that of humidity fluctuation. Additionally, the degree of impact increased as the fluctuation range of the temperature increased, while the reverse trend was observed with humidity fluctuations. With the 20 °C-range fluctuation in temperature, F. occidentalis died at the 1st instar larval stage. The offspring’s sex ratio was significantly higher at the 20%- and 30%-range fluctuations in humidity (0.47 and 0.49, respectively) compared to the control (0.35) and at the 10 °C-range fluctuation in temperature (0.33). From the fertility life table analysis, the intrinsic rate of increase (r) was higher at the 30%-range fluctuation in humidity and control conditions as 0.218 and 0.205, respectively. At the 10 °C-range fluctuation in temperature conditions, r was significantly lower as 0.169. High fluctuations in temperature and low fluctuations in humidity appear to be the best conditions for controlling F. occidentalis populations in greenhouses.  相似文献   

16.
In two Japanese cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata , with different habitat distributions, fully developed embryos hatch in response to high humidity due to rainfall. Despite the advantage of hatching on rainy days, this trait burdens embryos with an extra period of desiccation until the unpredictable advent of rain. We compared the ability of the fully developed embryos of these cicadas to endure periods of low humidity. Eggs were exposed to a combination of different humidities (43% and 75% relative humidity, RH) and durations (0–15 days), and then transferred to an environment with 100% RH to stimulate hatching. In both species, total hatching rates decreased as duration increased, although there was no significant effect of humidity. In C. facialis , a considerable proportion of the eggs hatched during the desiccation period, and the hatching rate was higher at 75% RH than at 43% RH. After transfer to 100% RH, most hatching occurred within a day regardless of the desiccation level. In G. nigrofuscata , no nymphs hatched during the desiccation periods. However, more eggs required more than a day after transfer to 100% RH to hatch after desiccation at 43% RH than at 75% RH. Consequently, the overall proportion of timely hatching of eggs (eggs hatching within a day of moisture supply) was higher after desiccation at 43% RH in C. facialis , but it was higher after desiccation at 75% RH in G. nigrofuscata . These different physiological responses of the two species may reflect adaptation to habitat dryness.  相似文献   

17.
飞虱虫疠霉继发性感染对桃蚜数量增长的控制作用   总被引:1,自引:0,他引:1  
冯明光  徐均焕 《应用生态学报》2002,13(11):1433-1436
用飞虱虫疠霉(Pandora delphaics)“孢子浴”接种的桃蚜(Myzus persicae)无翅成蚜在离体甘蓝菜叶片(65cm^2)上建立蚜群,在不同温度(10-30℃)和湿度(74%-100%RH)的组合条件下任其繁衍,发病和交互感染,以评价该菌的控蚜效果。在25个温,湿度组合处理(8次重复,每重复含3头接种成蚜)中,蚜群均不同程度的发病死亡,在历时30d的观察中,以高温(20-30℃),高湿(95%RH)组合条件下的蚜群发病快且死亡率高,蚜尸上产生的孢子有效地引起若蚜继发性感染。与相同温度下不带菌的对照蚜群相比,次于30℃下,各湿度除个别例外,第8d的控蚜率达30%以上,第20d达80%以上。在10℃和15℃下,控蚜效果一般不如上述较高温度下,且与湿度的关联程度相对较低,但最大控蚜效果均发生在100%RH处理中。结果表明,飞虱虫疠霉用于蚜虫防治的潜力很大,值得深入研究和开发利用。  相似文献   

18.
Foraging groups of Formosan subterranean termites, Coptotermes formosanus Shiraki were tested for their relative humidity (RH) preference in a humidity gradient arena in the laboratory at a constant temperature of 26°C. Five RH levels (9%, 33%, 53%, 75%, and 98%) were maintained in the test arena comprising of a series of closed containers by using dry silica gel, saturated salt solutions, or distilled water alone. Termites gradually aggregated to the highest RH chamber in the arena. After 1 h, a significantly greater percentage of termites (≈46%) aggregated to the highest RH chamber (98%) than to the lower RH chambers (≤75%). After 12 h, > 97% of the termites aggregated to the 98% RH chamber. In survival tests, where termites were exposed to 15 combinatorial treatments of five RH levels (9%, 33%, 53%, 75%, and 98%) and three temperatures (20°C, 28°C, and 36°C) for a week, the survival was significantly influenced by RH, temperature, and their interaction. A significantly higher mortality was observed on termites exposed to ≤75% RH chambers than to 98% RH chamber at the three temperatures and significantly lower survival was found at 36°C than at 28°C or 20°C. The combination of temperature and RH plays an important role in the survival of C. formosanus.  相似文献   

19.
A recording volumetric spore trap was operated continuously amidst overwintered grape leaves in a vineyard at Walenstadt, Switzerland from early May to mid-July 1988. Ascospores of Pseudopezicula tracheiphila were captured in the air beginning 11 May and 96 % of the total seasonal release occurred between 16 May and 2 June. Rain always preceded ascospore release. However, trap catches were associated with the simulataneous cessation of rainfall, decreased relative humidity (RH), increased temperature, and drying of foliage. Maximum ascospore release occurred in the second hour, following commencement of drying. Ascospores discharged dry onto glass coverslips survived with greater than 60 % viability after 1, 3, and 6 days exposure to 10, 15, 20, and 25°C at 70 % RH. Only at 30°C was viability reduced to slightly less than 50 % after 6 days.  相似文献   

20.
Extracellular recordings were made from moist cells, dry cells and warm cells in the tip pore sensilla of the spider tarsal organ. Stimulation consisted of a rapid shift from an adapting air stream to another one at different levels of partial pressure of water vapor or of temperature. The moist and the dry cells respond antagonistically to sudden changes in humidity. Both hygroreceptors are unusual in being excited in a synergistic manner by pungent vapors of very volatile, polar substances. Presumably, the hygrosensitivity is superimposed on basically chemosensitive receptors. A moist cell at average differential sensitivity is able to discriminate two successive upward steps in humidity when they differ by 11% relative humidity. For a single dry cell, the difference required for a correct discrimination between two downward humidity steps is 10% relative humidity. The moist and the dry cells are unique in that they occur in combination with warm cells. A single warm cell at average differential sensitivity is able to resolve differences in warming steps down to 0.4°C.Abbreviations HR relative humidity - T temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号