首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
秦峰松  杨崇林 《生命科学》2006,18(5):419-424
自20世纪60年代开始,秀丽线虫作为重要的模式生物在生命科学的发展过程中发挥着举足轻重的作用。线虫中的许多重大发现为人们理解复杂的细胞生命活动做出了极大的贡献。本文对秀丽线虫的研究历史、重要成果及研究前景作一简要综述。  相似文献   

3.
Lee MH  Ohmachi M  Arur S  Nayak S  Francis R  Church D  Lambie E  Schedl T 《Genetics》2007,177(4):2039-2062
The raison d'etre of the germline is to produce oocytes and sperm that pass genetic material and cytoplasmic constituents to the next generation. To achieve this goal, many developmental processes must be executed and coordinated. ERK, the terminal MAP kinase of a number of signaling pathways, controls many aspects of development. Here we present a comprehensive analysis of MPK-1 ERK in Caenorhabditis elegans germline development. MPK-1 functions in four developmental switches: progression through pachytene, oocyte meiotic maturation/ovulation, male germ cell fate specification, and a nonessential function of promoting the proliferative fate. MPK-1 also regulates multiple aspects of cell biology during oogenesis, including membrane organization and morphogenesis: organization of pachytene cells on the surface of the gonadal tube, oocyte organization and differentiation, oocyte growth control, and oocyte nuclear migration. MPK-1 activation is temporally/spatially dynamic and most processes appear to be controlled through sustained activation. MPK-1 thus may act not only in the control of individual processes but also in the coordination of contemporaneous processes and the integration of sequential processes. Knowledge of the dynamic activation and diverse functions of MPK-1 provides the foundation for identification of upstream signaling cascades responsible for region-specific activation and the downstream substrates that mediate the various processes.  相似文献   

4.
The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole‐animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal‐related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.  相似文献   

5.
  1. Download : Download high-res image (88KB)
  2. Download : Download full-size image
  相似文献   

6.
The nematode Caenorhabditis elegans is the simplest animal model available to study human disease. In this review, the worm homologues for the 58 human genes involved in lysosomal storage disorders and for 105 human genes associated with lysosomal function have been compiled. Most human genes had at least one worm homologue. In addition, the phenotypes of 147 mutants, in which these genes have been disrupted or knocked down, have been summarized and discussed. The phenotypic spectrum of worm models of lysosomal storage disorders varies from lethality to none obvious, with a large variety of intermediate phenotypes. The genetic power of C. elegans provides a means to identify genes involved in specific processes with relative ease. The overview of potential lysosomal phenotypes presented here might be used as a starting point for the phenotypic characterization of newly developed knock-out models or for the design of genetic screens selecting for loss or gain of suitable knock-out model phenotypes. Screens for genes involved in lysosomal biogenesis and function have been performed successfully resulting in the cup and glo mutants, but screens involving subtle phenotypes are likely to be difficult.  相似文献   

7.
The amenability of the nematode Caenorhabditis elegans for genetic analysis and other experimentation provides a powerful tool for studying host-pathogen interactions. Our current understanding of how C. elegans responds to pathogen challenges is in its infancy, but the discovery that the worm has inducible defence responses, which to some extent parallel those of other organisms, demonstrates the potential of this model organism for the study of innate immunity. Most progress in dissecting the C. elegans antimicrobial response has focused around signal transduction pathways and the expression of genes activated by the worm in response to microbial infections.  相似文献   

8.
In this report we sought to elucidate the mechanism by which the follicle-stimulating hormone (FSH) receptor signals to promote activation of the p42/p44 extracellular signal-regulated protein kinases (ERKs) in granulosa cells. Results show that the ERK kinase MEK and upstream intermediates Raf-1, Ras, Src, and L-type Ca(2+) channels are already partially activated in vehicle-treated cells and that FSH does not further activate them. This tonic stimulatory pathway appears to be restrained at the level of ERK by a 100-kDa phosphotyrosine phosphatase that associates with ERK in vehicle-treated cells and promotes dephosphorylation of its regulatory Tyr residue, resulting in ERK inactivation. FSH promotes the phosphorylation of this phosphotyrosine phosphatase and its dissociation from ERK, relieving ERK from inhibition and resulting in its activation by the tonic stimulatory pathway and consequent translocation to the nucleus. Consistent with this premise, FSH-stimulated ERK activation is inhibited by the cell-permeable protein kinase A-specific inhibitor peptide Myr-PKI as well as by inhibitors of MEK, Src, a Ca(2+) channel blocker, and chelation of extracellular Ca(2+). These results suggest that FSH stimulates ERK activity in immature granulosa cells by relieving an inhibition imposed by a 100-kDa phosphotyrosine phosphatase.  相似文献   

9.
The mitogen-activated protein kinase extracellular regulated kinase (ERK) plays a key role in the regulation of cellular proliferation. Mutations in the ERK cascade occur in 30% of malignant tumors. Thus understanding how the kinase identifies its cognate substrates as well as monitoring the activity of ERK is central to cancer research and therapeutic development. ERK binds to its protein targets, both downstream substrates and upstream activators, via a binding site distinct from the catalytic site of ERK. The substrate sequences that bind, or dock, to these sites on ERK influence the efficiency of phosphorylation. For this reason, simple peptide substrates containing only phosphorylation sequences typically possess low efficiencies for ERK. Appending short docking peptides derived from full-length protein substrates and activators of ERK to a phosphorylation sequence increased the affinity of ERK for the phosphorylation sequence by as much as 200-fold while only slightly diminishing the maximal velocity of the reaction. The efficiency of the phosphorylation reaction was increased by up to 150-fold, while the specificity of the substrate for ERK was preserved. Simple modular peptide substrates, which can be easily tailored to possess high phosphorylation efficiencies, will enhance our understanding of the regulation of ERK and provide a tool for the development of new kinase assays.  相似文献   

10.
The RAS/RAF/MEK/ERK signal transduction cascade plays an important role in the regulation of critical cellular processes such as cell proliferation, migration, and differentiation. The up-regulation of this pathway can negatively affect cell homeostasis and is responsible for the development of various forms of cancer and inflammation processes. Therefore, there is a strong interest in pursuing drug programs targeting some of the enzymes involved in this pathway. In addition to the determination of Ki, Kd, IC50, and/or EC50, a more thorough kinetic analysis can provide useful information for the selection of the best lead series during the early stage of the drug discovery process. This study describes a medium-throughput fluorescent probe displacement assay for the rapid determination of the koff constant, residence time, and kinetic efficiency for ERK (extracellular signal-regulated kinase) inhibitors. Using this method, we have identified several inhibitors that we have subjected to further kinetic analysis by comparing koff constants determined for these time-dependent inhibitors using either the active or inactive form of ERK2.  相似文献   

11.
The inheritance of functional mitochondria depends on faithful replication and transmission of mitochondrial DNA (mtDNA). A large and heterogeneous group of human disorders is associated with mitochondrial genome quantitative and qualitative anomalies. Several nuclear genes have been shown to account for these severe OXPHOS disorders. However, in several cases, the disease-causing mutations still remain unknown.Caenorhabditis elegans has been largely used for studying various biological functions because this multicellular organism has short life cycle and is easy to grow in the laboratory. Mitochondrial functions are relatively well conserved between human and C. elegans, and heteroplasmy exists in this organism as in human. C. elegans therefore represents a useful tool for studying mtDNA maintenance. Suppression by RNA interference of genes involved in mtDNA replication such as polg-1, encoding the mitochondrial DNA polymerase, results in reduced mtDNA copy number but in a normal phenotype of the F1 worms. By combining RNAi of genes involved in mtDNA maintenance and EtBr exposure, we were able to reveal a strong and specific phenotype (developmental larval arrest) associated to a severe decrease of mtDNA copy number. Moreover, we tested and validated the screen efficiency for human orthologous genes encoding mitochondrial nucleoid proteins. This allowed us to identify several genes that seem to be closely related to mtDNA maintenance in C. elegans.This work reports a first step in the further development of a large-scale screening in C. elegans that should allow to identify new genes of mtDNA maintenance whose human orthologs will obviously constitute new candidate genes for patients with quantitative or qualitative mtDNA anomalies.  相似文献   

12.
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.KEY WORDS: Caenorhabditis elegans, Cell non-autonomous proteotoxicity, Prion-like spreading  相似文献   

13.
The phylum Nematoda consists of over half a million species of worms that inhabit astoundingly diverse environments. Nematodes can live as obligatory parasites of plants and animals, or alternate a parasitic with a free-living life style. The fact that the vast majority of species are strictly free living often surprises parasitology students, for obviously the highest research priorities in this field have involved parasites of medical, veterinary and agricultural importance. Here Samuel Politz and Mario Philipp contend that some basic questions concerning the biology of the parasite cuticle can be investigated more easily and in greater depth in the free-living nematode Caenorhabditis elegans than in the parasites themselves.  相似文献   

14.
For certain pathogens capable of infecting a broad range of organisms, there exist universal virulence factors, necessary for full pathogenicity regardless of the host. This has been most clearly demonstrated by Ausubel and colleagues for the human opportunistic pathogen Pseudomonas aeruginosa. As a consequence, one can use non-mammalian model systems, including the nematode worm Caenorhabditis elegans, to assay for such virulence factors. A significant number of pathogens of C. elegans, that provoke a range of diseases, are now known, including the opportunistic human pathogen Serratia marcescens. After explaining the practical advantages associated with the use of C. elegans, and briefly reviewing previous studies, the results of a screen for S. marcescens virulence factors will be presented.  相似文献   

15.
Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans.  相似文献   

16.
The idea of using simple, genetically tractable host organisms to study the virulence mechanisms of pathogens dates back at least to the work of Darmon and Depraitère [1]. They proposed using the predatory amoeba Dictyostelium discoideum as a model host, an approach that has proved to be valid in the case of the intracellular pathogen Legionella pneumophila [2]. Research from the Ausubel laboratory has clearly established the nematode Caenorhabditis elegans as an attractive model host for the study of Pseudomonas aeruginosa pathogenesis [3]. P. aeruginosa is a bacterium that is capable of infecting plants, insects and mammals. Other pathogens with a similarly broad host range have also been shown to infect C. elegans [3,4]. Nevertheless, the need to determine the universality of C. elegans as a model host, especially with regards pathogens that have a naturally restricted host specificity, has rightly been expressed [5]. We report here that the enterobacterium Salmonella typhimurium, generally considered to be a highly adapted pathogen with a narrow range of target hosts [6], is capable of infecting and killing C. elegans. Furthermore, mutant strains that exhibit a reduced virulence in mammals were also attenuated for their virulence in C. elegans, showing that the nematode may constitute a useful model system for the study of this important human pathogen.  相似文献   

17.
18.
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.  相似文献   

19.
以秀丽线虫作为评价蓖麻碱毒性的模式生物,通过测定不同浓度的蓖麻碱提取物对线虫的半致死浓度、生殖能力和体内酶活性的影响,对蓖麻碱的毒性进行初步评价。结果表明,蓖麻碱提取物的48h的LD50为0.977mg/mL,72h的LD50为0.821mg/mL;随着蓖麻碱提取物浓度从0.5mg/mL增加到2.0mg/mL,虫体的SOD活性由(80.669±3.2)U/mg降低至(1.532±0.2)U/mg;CAT活性由(70.947±2.7)U/mg降低至(0.234±2.1)U/mg。说明蓖麻碱提取物浓度越大,毒性越强,线虫体内酶活越低,蓖麻碱提取物可使秀丽线虫生殖能力降低或丧失。  相似文献   

20.
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号