首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The articular facet of a superior articular process of the sacrum is directed backward, inward, and upward with marked variations. 4 angles characterize the orientation of this facet: a) The relative angle of tilt: i.e. the angle between the articular facet and the upper end-plate of the sacrum, measured in a sagittal plane. b) The absolute angle of tilt: i.e. the angle between the articular facet and the horizontal plane, measured in a sagittal plane. c) The tilted part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a plane parallel to the upper end-plate of the sacrum. d) The horizontal part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a horizontal plane. These 4 angles are determined by characteristic straights within the articular facet and certain reference planes (upper end-plate of the sacrum, horizontal plane, sagittal plane). Only 2 intersecting straights suffice for an adequate determination of a geometrical plane; therefore, if we know the relative angle of tilt and the tilted part-angle of opening, we are able to construct or to calculate the absolute angle of tilt as well as the horizontal part-angle of opening by using the range of inclination of the sacrum. The shape as well as the orientation of the articular facets at the superior articular processes of the sacrum do not depend on the inclination of the pelvis nor on the inclination of the sacrum nor on the range of the lumbosacral angle. Only the absolute angle of tilt shows a reference to the inclination of the sacrum because the relative angle of tilt shows a certain constancy. The orientation of the articular facets is slightly influenced by static moments, but considerably determined by dynamical requirements. At spines with irregular numbers of praesacral vertebrae, the orientation of the lumbosacral articular facets do not differ from the orientation of these facets at spines with the regular number of 24 praesacral vertebrae. This, however, does not prove right at spines, that have a lumbosacral "transitional vertebra". Such lumbosacral transitional vertebrae detract much from the stability of the lumbosacral region of the spine.  相似文献   

2.
The problem of low back pain (LBP) in children is very common and many specialists are dealing with it in everyday practice. The cause for low back pain often is not found and classified under the diagnosis of non specific low back pain. The objective of this prospective study is to determine wether children with non specific low back pain and existence of anomalies in LS spine (transitional vertebra- TV and/or Spina bifida occulta SBO) also have the degeneration of the intervertebral disc (DD) L4-L5 and/or L5-S1. This prospective study included 69 patients from 8 to 16 years of age (X 12.81) of whom 40 were male (57.97%), and 29 female (42.03%). They all were examinated in University of Zagreb, "Sestre milosrdnice" University Hospital Center, Zagreb Children's Hospital, Department of Orthopaedic, Zagreb, Croatia. The reason of their visit was non specific low back pain. Pain was measured by visual analog scale (VAS) and mean score was three, duration of pain was between two and four weeks. Also, pain was sporadic, during daytime and not connected with level of physical activity. They all have undergone an algorithm of radiological examinations. Standard AP and LL radiographs (RTG) were made, as well as magnetic resonance (MR) of LS spine and sacrum in sagittal and transversal plane in T1 and T2 weighted sequence. The anomalies of L5 and S1 were found in 65 patients: transitional vertebra classified according to Castellvi et al. and SBO. In MRI in T2 weighted sequence DD was found in 61 patients which was classified modified from Pearce. Data analysis and comparison showed that 56patients with TV and/or SBO have changes on vertebral dynamic segment L5-S1 (VDS) and that means DD. In 13 patients only DD or spinal anomaly (TV and/or SBO) were found. Correlation between anomalies and DD in those patients was established by McNemar analysis and has shown significant difference (p=0.581) in favour of the patients with anomaly and DD. This has established that all of 56 patients with spinal anomaly could have DD as known cause of LBP.  相似文献   

3.
The aim of this study was to demonstrate the ability of conventional radiography to detect bone erosions of different sizes in metacarpophalangeal (MCP) joints of rheumatoid arthritis (RA) patients using magnetic resonance imaging (MRI) as the standard reference. A 0.2 T Esaote dedicated extremity MRI unit was used to obtain axial and coronal T1-weighted gradient echo images of the dominant 2nd to 5th MCP joints of 69 RA patients. MR images were obtained and evaluated for bone erosions according to the OMERACT recommendations. Conventional radiographs of the 2nd to 5th MCP joints were obtained in posterior-anterior projection and evaluated for bone erosions. The MRI and radiography readers were blinded to each other's assessments. Grade 1 MRI erosions (1% to 10% of bone volume eroded) were detected by radiography in 20%, 4%, 7% and 13% in the 2nd, 3rd, 4th and 5th MCP joint, respectively. Corresponding results for grade 2 erosions (11% to 20% of bone volume eroded) were 42%, 10%, 60% and 24%, and for grade 3 erosions (21% to 30% of bone volume eroded) 75%, 67%, 75% and 100%. All grade 4 (and above) erosions were detected on radiographs. Conventional radiography required a MRI-estimated bone erosion volume of 20% to 30% to allow a certain detection, indicating that MRI is a better method for detection and grading of minor erosive changes in RA MCP joints.  相似文献   

4.
The hyoid bone is a unique bone in the skeleton not articulated to any other bone. The hyoid muscles, which attach to the hyoid bone, may play a role in neck mechanics, but analysis of their function requires quantifying hyoid bone mechanics. The goal of this study was to obtain the detailed kinematics of the hyoid bone over a large range of flexion-extension motion using radiographs at 5 postures. The position of the hyoid bone in the sagittal plane was characterized with respect to head, jaw, and vertebral movements. Sex differences in hyoid kinematics were also investigated. We hypothesized that (1) the position of the hyoid bone in the sagittal plane is linearly correlated with motion of the head, jaw, and vertebrae, and (2) the hyoid position, size, and kinematics are sex-specific. We found that the hyoid bone X, Y, and angular position generally had strong linear correlations with the positions of the head, jaw, and the cervical vertebrae C1-C4. Hyoid X and angular position was also correlated to C5. Sex differences were found in some regressions of the hyoid bone with respect to C1-C5. The angular and linear measurements of the hyoid bone showed sex differences in absolute values, which were not evident after normalization by posture or neck size. Incorporating these results to neck models would enable accurate modeling of the hyoid muscles. This may have implications for analyzing the mechanics of the cervical spine, including loads on neck structures and implants.  相似文献   

5.
Abdominal bracing is a voluntary method of increasing spine stiffness to restrict spine displacement. Previous investigations of abdominal bracing have measured effects on whole lumbar motion; however, how this effect is distributed across the lumbar spine is unknown. Therefore, this study was designed to test the influence of abdominal bracing on spine intersegmental (T9/T10 to L5/S1) flexion, measured via skin surface markers, in response to sudden loading perturbations applied through the hands in 16 young healthy participants. Abdominal and back muscle activation responses were also measured. The results demonstrated that abdominal bracing significantly reduced sagittal plane motion at intersegmental levels T12/L1 to L4/L5, by 45% (0.74 degrees) at L4/L5 to 94% (0.71 degrees) at L1/L2 compared to control. L5/S1 experienced a 50% (0.36 degrees) reduction, but this was not statistically significant. Additionally, abdominal bracing resulted in greater baseline activation of all abdominal and back muscles, but did not affect onset times or response magnitudes of any of the back muscles acting counter to the perturbation. Therefore, the elevated baseline activation of trunk musculature during an abdominal brace serves to restrict flexion motion at the majority of the intersegmental lumbar spine (T12/L1 to L4/5) in response to sudden trunk flexion perturbations.  相似文献   

6.
By the manual test of the lumbosacral instability described by Eder and Tilscher we can never find out for certain whether the fifth lumbar vertebra can be shifted ventrally above the sacrum. Before this test the patient has to be turned over on to his side with hips flexed, which causes a ventral flexion (anteflexion) of the lumbosacral segment. During the test, however, the lumbosacral segment is forced to a dorsal flexion (retroflexion); therefore the spinous process of the fifth lumbar vertebra retires from the back surface simulating a sliding forward of the whole vertebra.  相似文献   

7.
Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be −0.7 ± 0.6 MPa (L3L4) and −0.6 ± 0.5 MPa (L4L5). S3 increased to −2.0 ± 1.3 MPa (L3L4) and −1.2 ± 0.6 MPa (L4L5) in full flexion and to −1.1 ± 0.8 MPa (L3L4) and −0.7 ± 0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature.  相似文献   

8.
In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.  相似文献   

9.
A “long‐backed” scenario of hominin vertebral evolution posits that early hominins possessed six lumbar vertebrae coupled with a high frequency of four sacral vertebrae (7:12‐13:6:4), a configuration acquired from a hominin‐panin last common ancestor (PLCA) having a vertebral formula of 7:13:6‐7:4. One founding line of evidence for this hypothesis is the recent assertion that the “Lucy” sacrum (A.L. 288‐1an, Australopithecus afarensis) consists of four sacral vertebrae and a partially‐fused first coccygeal vertebra (Co1), rather than five sacral vertebrae as in modern humans. This study reassesses the number of sacral vertebrae in Lucy by reexamining the distal end of A.L.288‐1an in the context of a comparative sample of modern human sacra and Co1 vertebrae, and the sacrum of A. sediba (MH2). Results demonstrate that, similar to S5 in modern humans and A. sediba, the last vertebra in A.L. 288‐1an exhibits inferiorly‐projecting (right side) cornua and a kidney‐shaped inferior body articular surface. This morphology is inconsistent with that of fused or isolated Co1 vertebrae in humans, which either lack cornua or possess only superiorly‐projecting cornua, and have more circularly‐shaped inferior body articular surfaces. The level at which the hiatus' apex is located is also more compatible with typical five‐element modern human sacra and A. sediba than if only four sacral vertebrae are present. Our observations suggest that A.L. 288‐1 possessed five sacral vertebrae as in modern humans; thus, sacral number in “Lucy” does not indicate a directional change in vertebral count that can provide information on the PLCA ancestral condition. Am J Phys Anthropol 156:295–303, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Experimental nerve imaging at 1.5-T   总被引:1,自引:0,他引:1  
Experimental lesions of the peripheral nerve system can be visualized in vivo by magnetic resonance imaging (MRI). Many studies of the rat peripheral nervous systems were performed on dedicated animal MR scanners with a high magnetic field strength for good spatial resolution. Here, we present an MR protocol to study experimental lesions of the rat nervous system with clinical 1.5-T MR scanners and commercially available coils. Using a three-sequence approach (T1-weighted imaging, fat-saturated T2-weighted imaging and fat-saturated T1-weighted imaging with Gd-DTPA in the same plane), the relevant signal changes of the lesioned nerve can be visualized and separated from other structures, e.g., blood vessels. Furthermore, we give an overview on different types of contrast agents used for peripheral nerve MR imaging and MR findings in selected experimental models of rat peripheral nerve injury.  相似文献   

11.
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.  相似文献   

12.
BACKGROUND: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. METHOD OF APPROACH: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrainedflexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. RESULTS: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. CONCLUSIONS: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.  相似文献   

13.
High assimilation sacrum is fusion of the caudal‐most lumbar vertebra to the first sacral vertebra. Previous studies have shown that high assimilation is associated with clinical problems, including obstetrical difficulty. This study used adult American males (n = 1,048) and females (n = 1,038) of the Hamann–Todd and Terry skeletal collections to determine the prevalence of high assimilation and its effect on pelvic size, and to consider the obstetrical and evolutionary implications of high assimilation. The prevalence of high assimilation in this sample is 6.3%, with males and females not differing significantly from one another in their prevalence. This prevalence is near the median for that reported in 41 other samples. In both males and females, individuals with high assimilation have significantly longer anteroposterior and posterior sagittal diameters of the inlet, and shorter sacrum compared to those with a nonassimilated sacrum. Females with high assimilation have a significantly narrower sacral angulation (i.e., reduced inclination of ventral axis of sacrum), and shorter posterior sagittal diameter of the outlet compared to those with a nonassimilated sacrum. A short posterior sagittal diameter of the outlet is associated with childbirth difficulty. As high assimilation is partial homeotic transformation of a lumbar vertebra, this study supports previous research that homeotic transformation of vertebrae is selectively disadvantageous. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
In this study, we intended to describe a human case of lumbosacral canal sparganosis in People’s Republic of China (China). A 56-year-old man was admitted to Xiangya Hospital Central South University in Changsha, Hunan province, China after having an experience of perianal pain for a week. An enhancing mass, a tumor clinically suggested, was showed at the S1–S2 level of the lumbosacral spine by the examination of magnetic resonance imaging (MRI) with gadolinium contrast. The patient was received the laminectomy from S1 to S2, and an ivory-white living worm was detected in inferior margin of L5. In ELISA-test with cerebrospinal fluid (CSF) and serum samples, anti-sparganum antibodies were detected. He had a ingesting history of undercooked frog meat in his youth. By the present study, a human case of spinal sparganosis invaded in lumbosacral canal at the S1–S2 level was diagnosed in China. Although the surgical removal of larvae is known to be the best way of treatment for sparganosis, we administered the high-dosage of praziquantel, albendazole and dexamethasone to prevent the occurrence of another remain worms in this study.  相似文献   

15.
Geometrical dimensions of the lumbar segments were determined from a series of lateral radiographs. A two-dimensional model of the lumbar vertebra in the sagittal plane is used. The model is based on five landmarks, which enable the determination of twelve geometrical parameters. The sample includes 157 healthy young males, 20-38 years old. Two-dimensional analysis of vertebral body height, depth and intervertebral spacing was performed. In all subjects disc height increases from L1 to L5, while anterior height is always bigger than posterior height, which emphasizes the lordotic shape of the lumbar region. Anthropometrical values are presented and geometrical relations between the lumbar segments are discussed.  相似文献   

16.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

17.
Using magnetic resonance imaging (MRI) as the sole imaging modality for patient modeling in radiation therapy (RT) is a challenging task due to the need to derive electron density information from MRI and construct a so-called pseudo-computed tomography (pCT) image. We have previously published a new method to derive pCT images from head T1-weighted (T1-w) MR images using a single-atlas propagation scheme followed by a post hoc correction of the mapped CT numbers using local intensity information. The purpose of this study was to investigate the performance of our method with head zero echo time (ZTE) MR images. To evaluate results, the mean absolute error in bins of 20 HU was calculated with respect to the true planning CT scan of the patient. We demonstrated that applying our method using ZTE MR images instead of T1-w improved the correctness of the pCT in case of bone resection surgery prior to RT (that is, an example of large anatomical difference between the atlas and the patient).  相似文献   

18.
The human sacrum is sexually dimorphic, with males being larger than females in most dimensions. Previous studies, though, suggest that females may have a longer costal process of the first sacral vertebra (S1) than males. However, these studies neither quantified nor tested statistically the costal process of S1. This study compares S1 with the five lumbar vertebrae (L1 to L5) for a number of metric dimensions, including costal process length. Four issues are addressed, the: 1) hypothesis that females have a longer costal process of S1 than males; 2)hypothesis that homologous structures (i.e., costal processes of L1 to S1) differ in their direction of sexual dimorphism; 3) importance of the costal process of S1 to the obstetrical capacity of the pelvis; and 4) evolution of sexual dimorphism in costal process length of S1. One hundred ninety-seven individuals, including males and females of American blacks and whites, from the Hamann-Todd and Terry Collections were studied. Results show that males are significantly larger than females for most vertebral measurements, except that females have a significantly longer costal process of S1 than males. Costal process length of S1 is positively correlated with the transverse diameter and circumference of the pelvic inlet. The magnitude of sexual dimorphism in costal process length of S1 ranks this measure among the most highly dimorphic of the pelvis. Compared with the humans in this study, australopithecines have a relatively long costal process of S1, but their broad sacrum was not associated with obstetrical imperatives.  相似文献   

19.
Vertebral hemangiomas are an incidental and relatively common radiological finding and a benign tumor of vascular origin. VH are the most common spine tumors with an estimated incidence of 1.9-27% in the general population. Rarely, vertebral hemangiomas can exhibit extraosseous expansion with resulting compression of the spinal cord. Such lesions are termed aggressive or atypical vertebral hemangiomas (AVH) and account for less than 1% of spinal hemangiomas. A 68-year-old female was referred with progressive walking difficulty and sensory disturbances in her lower extremities. MRI imaging of the thoracic spine revealed a T1- and T2-weighted hyperintense lesion involving the T10 vertebra. Additionally, there was extraosseous extension of the tumor into the spinal canal, located both anterior and posterior to the spinal cord, causing severe spinal cord compression. A combined endovascular and surgical approach (arterial coil embolization and en bloc resection) for treatment was decided. Although vertebral hemangiomas are an incidental and relatively common radiological finding, the findings of our case were consistent with an aggressive hemangioma with atypical MRI and clinical prognostic characteristics. In summary, the present case highlights the need for multidisciplinary approach and in-depth knowledge of this rare pathologic entity.  相似文献   

20.
目的:探讨MRI在脊柱骨巨细胞瘤诊疗中的临床应用价值。方法:回顾性分析2005年4月-2010年11月我院5例经病理证实为脊柱骨巨细胞瘤患者的MRI检查表现。结果:椎体内病灶呈不同程度膨胀性破坏,T1WI呈等、低信号改变,T2WI呈混杂信号,增强扫描呈不同程度均匀强化。结论:MRI能有效显示骨巨细胞瘤的病变部位及范围,。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号