首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice.  相似文献   

2.
Metabolic regulation of gluconeogenesis and glycogenolysis by two phosphorylated derivatives of glycerol, G3P, and DHAP, and by F2,6BP, was assessed in vitro in liver homogenates obtained from Chinese hamsters (C. griseus) of two types: diabetic animals from sublines with consistent glycosuria and hyperglycemia, and normoglycemic controls. Only FBPase was sensitive to inhibition by the phosphorylated metabolites. G3P was weakly inhibitory of FBPase. Addition of 7 X 10(-3) M DHAP halved FBPase activity in the diabetic hamsters and 4 X 10(-3) M DHAP produced the same effect in the controls. The other gluconeogenic enzymes and phosphorylase a were only negligibly inhibited. In contrast, F2,6BP inhibited FBPase at concentrations in the micromolar range. Liver homogenates from diabetic hamsters appeared significantly more sensitive to F2,6BP inhibition of FBPase than those from controls at concentrations 0.6 X 10(-6) M and higher. These data indicate that in well-fed hamsters phosphorylated glycerol derivatives are unlikely to regulate hepatic gluconeogenesis at physiologic concentrations. However, the effects of F2,6BP on gluconeogenesis and glycolysis may be linked to those mediated by insulin. Thus, the deficiency of insulin, elevated end-organ insulin resistance, the alteration in the glucagon-insulin interaction, or a combination of these possible causes can be involved in an abnormal regulation of glycolysis and gluconeogenesis at the FBPase step, associated with changes in F2,6BP concentration.  相似文献   

3.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease   总被引:49,自引:0,他引:49  
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase.  相似文献   

4.
To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO - EGP), hepatic glucose 6-phosphate (G-6-P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6-P), and EGP (P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP (P < 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity (P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP (P < 0.001). G-6-P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.  相似文献   

5.
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.  相似文献   

6.
Obesity-associated insulin resistance (IR) is a major risk factor for developing type 2 diabetes and an array of other metabolic disorders. In particular, hepatic IR contributes to the increase in hepatic glucose production and consequently the development of fasting hyperglycemia. In this study, we explored whether kaempferol, a flavonoid isolated from Gink go biloba, is able to regulate hepatic gluconeogenesis and blood glucose homeostasis in high-fat diet-fed obese mice and further explored the underlying mechanism by which it elicits such effects. Oral administration of kaempferol (50 mg/kg/day), which is the human equivalent dose of 240 mg/day for an average 60 kg human, significantly improved blood glucose control in obese mice, which was associated with reduced hepatic glucose production and improved whole-body insulin sensitivity without altering body weight gain, food consumption or adiposity. In addition, kaempferol treatment increased Akt and hexokinase activity, but decreased pyruvate carboxylase (PC) and glucose-6 phosphatase activity in the liver without altering their protein expression. Consistently, kaempferol decreased PC activity and suppressed gluconeogenesis in HepG2 cells as well as primary hepatocytes isolated from the livers of obese mice. Furthermore, we found that kaempferol is a direct inhibitor of PC. These findings suggest that kaempferol may be a naturally occurring antidiabetic compound that acts by suppressing glucose production and improving insulin sensitivity. Kaempferol suppression of hepatic gluconeogenesis is due to its direct inhibitory action on the enzymatic activity of PC.  相似文献   

7.
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.  相似文献   

8.
The mechanisms of the impairment in hepatic glucose metabolism induced by free fatty acids (FFAs) and the importance of FFA oxidation in these mechanisms remain unclear. FFA-induced peripheral insulin resistance has been linked to membrane translocation of novel protein kinase C (PKC) isoforms, but the role of PKC in hepatic insulin resistance has not been assessed. To investigate the biochemical pathways that are induced by FFA in the liver and their relation to glucose metabolism in vivo, we determined endogenous glucose production (EGP), the hepatic content of citrate (product of acetyl-CoA derived from FFA oxidation and oxaloacetate), and hepatic PKC isoform translocation after 2 and 7 h Intralipid + heparin (IH) or SAL in rats. Experiments were performed in the basal state and during hyperinsulinemic clamps (insulin infusion rate, 5 mU. kg(-1). min(-1)). IH increased EGP in the basal state (P < 0.001) and during hyperinsulinemia (P < 0.001) at 2 and 7 h. Also, 7-h infusion of IH induced resistance to the suppressive effect of insulin on EGP (P < 0.05). Glycerol infusion (resulting in plasma glycerol levels similar to IH infusion) did not have any effect on EGP. IH increased hepatic citrate content by twofold, independent of the insulin levels and the duration of IH infusion. IH induced hepatic PKC-delta translocation from the cytosolic to membrane fraction in all groups. PKC-delta translocation was greater at 7 compared with 2 h (P < 0.05). In conclusion, 1) increased FFA oxidation may contribute to the FFA-induced increase in EGP in the basal state and during hyperinsulinemia but is not associated with FFA-induced hepatic insulin resistance, and 2) the progressive insulin resistance induced by FFA in the liver is associated with a progressive increase in hepatic PKC-delta translocation.  相似文献   

9.
Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.  相似文献   

10.
11.
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 μg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.  相似文献   

12.
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.  相似文献   

13.
14.
The rates of glucose production from various substrates entering gluconeogenesis at different steps were investigated in hepatocytes isolated from term-fetus and newborn rabbits fasted during the first 2 days of life. The data were compared to the rate of glucose production measured in hepatocytes from young rabbits (50-60 days) starved for 48 h. The net production of glucose from substrates (lactate, pyruvate, propionate, alanine) entering gluconeogenesis below phosphoenolpyruvate was very low at birth and increased during the first day of life, in relation with an increased cytosolic phosphoenolpyruvate carboxykinase activity. The net production of glucose from precursors entering gluconeogenesis at the level of triose phosphates (dihydroxyacetone, fructose) was low at birth but a maximal capacity for gluconeogenesis was reached within 6 h after birth. This enhanced gluconeogenic capacity was associated with a fall in hepatic fructose 2,6-bisphosphate concentration and a reduced glycolytic flux. In contrast, a high glucose production from galactose was already present at birth and did not rise at 24 or 48 h after delivery. These results suggest that the development of gluconeogenic capacity in hepatocytes isolated from newborn rabbit is dependent upon two factors, a decrease in the F2,6-P2 concentration which reduces the glycolytic flux and an increase in the activity of cytosolic phosphoenolpyruvate carboxykinase.  相似文献   

15.
16.
Excess cortisol has been demonstrated to impair hepatic and extrahepatic insulin action. To determine whether glucose effectiveness and, in terms of endogenous glucose release (EGR), gluconeogenesis, also are altered by hypercortisolemia, eight healthy subjects were studied after overnight infusion with hydrocortisone or saline. Glucose effectiveness was assessed by a combined somatostatin and insulin infusion protocol to maintain insulin concentration at basal level in the presence of prandial glucose infusions. Despite elevated insulin concentrations (P < 0.05), hypercortisolemia resulted in higher glucose (P < 0.05) and free fatty acid concentrations (P < 0.05). Furthermore, basal insulin concentrations were higher during hydrocortisone than during saline infusion (P < 0.01), indicating the presence of steroid-induced insulin resistance. Postabsorptive glucose production (P = 0.64) and the fractional contribution of gluconeogenesis to EGR (P = 0.33) did not differ on the two study days. During the prandial glucose infusion, the integrated glycemic response above baseline was higher in the presence of hydrocortisone than during saline infusion (P < 0.05), implying a decrease in net glucose effectiveness (4.42 +/- 0.52 vs. 6.65 +/- 0.83 ml.kg-1.min-1; P < 0.05). To determine whether this defect is attributable to an impaired ability of glucose to suppress glucose production, to stimulate its own uptake, or both, glucose turnover and "hot" (labeled) indexes of glucose effectiveness (GE) were calculated. Hepatic GE was lower during cortisol than during saline infusion (2.39 +/- 0.24 vs. 3.82 +/- 0.51 ml.kg-1.min-1; P < 0.05), indicating a defect in the ability of glucose to restrain its own production. In addition, in the presence of excess cortisol, glucose disappearance was inappropriate for the prevailing glucose concentration, implying a decrease in glucose clearance (P < 0.05). The decrease in glucose clearance was confirmed by the higher increment in [3-3H]glucose during hydrocortisone than during saline infusion (P < 0.05), despite the administration of identical tracer infusion rates. In conclusion, short-term hypercortisolemia in healthy individuals with normal beta-cell function decreases insulin action but does not alter rates of EGR and gluconeogenesis. In addition, cortisol impairs the ability of glucose to suppress its own production, which due to accumulation of glucose in the glucose space results in impaired peripheral glucose clearance. These results suggest that cortisol excess impairs glucose tolerance by decreasing both insulin action and glucose effectiveness.  相似文献   

17.
18.
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.  相似文献   

19.
Uncontrolled gluconeogenesis results in elevated hepatic glucose production in type 2 diabetes (T2D). The small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is known to catalyze deSUMOylation of target proteins, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic gluconeogenesis and the occurrence of T2D remain unknown. Herein, we established SENP2 hepatic knockout mice and found that SENP2 deficiency could protect against high-fat diet–induced hyperglycemia. Pyruvate- or glucagon-induced elevation in blood glucose was attenuated by disruption of SENP2 expression, whereas overexpression of SENP2 in the liver facilitated high-fat diet–induced hyperglycemia. Using an in vitro assay, we showed that SENP2 regulated hepatic glucose production. Mechanistically, the effects of SENP2 on gluconeogenesis were found to be mediated by the cellular fuel sensor kinase, 5′-AMP-activated protein kinase alpha (AMPKα), which is a negative regulator of gluconeogenesis. SENP2 interacted with and deSUMOylated AMPKα, thereby promoting its ubiquitination and reducing its protein stability. Inhibition of AMPKα kinase activity dramatically reversed impaired hepatic gluconeogenesis and reduced blood glucose levels in SENP2-deficient mice. Our study highlights the novel role of hepatic SENP2 in regulating gluconeogenesis and furthers our understanding of the pathogenesis of T2D.  相似文献   

20.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号