首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gene expression in tension wood and bast fibres   总被引:1,自引:0,他引:1  
Tension wood is produced in the xylem of some angiosperm trees, such as poplar (Populus spp.), whereas bast fibers are phloem-derived cells best known from annual crops, such as flax (Linum usitatissimum L.). Despite their different origins, secondary walls of both tension wood and bast fibers share distinctive properties, including an abundance of axially oriented, crystalline cellulose produced in a distinctive gelatinous-type layer. Because of these unique properties, tension wood and phloem fibers have separately been the subject of at least nine previously published gene or protein profiling studies. Here we review these experiments with a focus on those genes, whose expression distinguishes both tension wood and bast fibers from the more predominant types of xylem found elsewhere in the stem. Notable among these is an evolutionarily distinctive group of fasciclin-like arabinogalactan proteins (FLA) and a putative rhamnogalacturonan lyase.  相似文献   

5.
6.
7.
8.
9.
Dicot wood is mainly composed of cellulose, lignin and glucuronoxylan (GX). Although the biosynthetic genes for cellulose and lignin have been studied intensively, little is known about the genes involved in the biosynthesis of GX during wood formation. Here, we report the molecular characterization of two genes, PoGT8D and PoGT43B, which encode putative glycosyltransferases, in the hybrid poplar Populus alba x tremula. The predicted amino acid sequences of PoGT8D and PoGT43B exhibit 89 and 75% similarity to the Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9, respectively, both of which have been shown to be required for GX biosynthesis. The PoGT8D and PoGT43B genes were found to be expressed in cells undergoing secondary wall thickening, including the primary xylem, secondary xylem and phloem fibers in stems, and the secondary xylem in roots. Both PoGT8D and PoGT43B are predicted to be type II membrane proteins and shown to be targeted to Golgi. Overexpression of PoGT43B in the irx9 mutant was able to rescue the defects in plant size and secondary wall thickness and partially restore the xylose content. Taken together, our results demonstrate that PoGT8D and PoGT43B are Golgi-localized, secondary wall-associated proteins, and PoGT43B is a functional ortholog of IRX9 involved in GX biosynthesis during wood formation.  相似文献   

10.
Xylan is the major hemicellulose in dicot wood. Unraveling genes involved in the biosynthesis of xylan will be of importance in understanding the process of wood formation. In this report, we investigated the possible role of poplar GT47C, a glycosyltransferase belonging to family GT47, in the biosynthesis of xylan. PoGT47C from the hybrid poplar Populus alba x tremula exhibits 84% sequence similarity to Fragile fiber8 (FRA8), which is involved in the biosynthesis of glucuronoxylan in Arabidopsis. Phylogenetic analysis of glycosyltransferase family GT47 in the Populus trichocarpa genome revealed that GT47C is the only close homolog of FRA8. In situ hybridization showed that the PoGT47C gene was expressed in developing primary xylem, secondary xylem and phloem fibers of stems, and in developing secondary xylem of roots. Sequence analysis suggests that PoGT47C is a type II membrane protein, and study of the subcellular localization demonstrated that fluorescent protein-tagged PoGT47C was located in the Golgi. Immunolocalization with a xylan monoclonal antibody LM10 revealed a nearly complete loss of xylan signals in the secondary walls of fibers and vessels in the Arabidopsis fra8 mutant. Expression of PoGT47C in the fra8 mutant restored the secondary wall thickness and xylan content to the wild-type level. Together, these results suggest that PoGT47C is functionally conserved with FRA8 and it is probably involved in xylan synthesis during wood formation.  相似文献   

11.
 It has previously been shown (D.R. Gang et al., 1999, J Biol Chem 274: 7516–7527) that the most abundant protein in the secondary xylem of poplar (Populus trichocarpa cv. `Trichobel') is a phenylcoumaran benzylic ether reductase (PCBER), an enzyme involved in lignan synthesis. Here, the distribution and abundance of PCBER in poplar was studied at both the RNA and protein level. The cellular expression pattern was determined by immunolocalization of greenhouse-grown plants as well as of a field-grown poplar. Compared to other poplar tissues, PCBER is preferentially produced in the secondary xylem of stems and roots and is associated with the active growth period. The protein is present in all cells of the young differentiating xylem, corresponding to the zone of active phenylpropanoid metabolism and lignification. In addition, PCBER is located in young differentiating phloem fibers, in xylem ray parenchyma, and in xylem parenchyma cells at the growth-ring border. Essentially the same expression pattern was observed in poplars grown in greenhouses and in the field. The synthesis of PCBER in phenylpropanoid-synthesizing tissues was confirmed in a bending experiment. Induction of PCBER was observed in the pith of mechanically bent poplar stems, where phenylpropanoid metabolism is induced. These results indicate that the products of PCBER activity are synthesized mainly in lignifying tissues, suggesting a role in wood development. Received: 28 September 1999 / Accepted: 15 March 2000  相似文献   

12.
? Genes controlling plant growth and form are of considerable interest, because they affect survival and productivity traits, and are largely unknown or poorly characterized. The SHORT INTERNODES(SHI) gene is one of a 10-member SHI-RELATED SEQUENCE (SRS) gene family in Arabidopsis that includes important developmental regulators. ? Using comparative sequence analysis of the SRS gene families in poplar and Arabidopsis, we identified two poplar proteins that are most similar to SHI and its closely related gene STYLISH1 (STY1). The two poplar genes are very similar in sequence and expression and are therefore probably paralogs with redundant functions. ? RNAi suppression of the two Populus genes enhanced shoot and root growth, whereas the overexpression of Arabidopsis SHI in poplar reduced internode and petiole length. The suppression of the two genes increased fiber length and the proportion of xylem tissue, mainly through increased xylem cell proliferation. The transgenic modifications were also associated with significant changes in the concentrations of gibberellins and cytokinin. ? We conclude that Populus SHI-RELATED SEQUENCE (SRS) genes play an important role in the regulation of vegetative growth, including wood formation, and thus could be useful tools for the modification of biomass productivity, wood quality or plant form.  相似文献   

13.
14.
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.  相似文献   

15.
The cambial activity and periodicity of secondary xylem and phloem formation have been less studied in tropical tree species than in temperate ones. This paper describes the relationship between seasonal cambial activity, xylem and phloem development, and phenology in Schizolobium parahyba, a fast growing semideciduous seasonal forest tree from southeastern Brazil. From 2002 to 2003, wood samples were collected periodically and phenology and climate were recorded monthly in the same period. S. parahyba forms annual growth increments in wood, delimited by narrow initial parenchyma bands. The reduction of the cambial activity to a minimum correlates to the dry season and leaf fall. The higher cambial activity correlates to the wet season and the presence of mature leaves. In phloem, a larger conductive region was observed in the wet season, when the trees were in full foliage. The secondary phloem did not exhibit any incremental zone marker; however, we found that the axial parenchyma tends to form irregular bands.  相似文献   

16.
棉花GA 20-氧化酶基因转毛白杨的研究   总被引:1,自引:0,他引:1  
以毛白杨为材料,研究了超量表达赤霉素合成酶基因(GA20-氧化酶基因)对毛白杨根、茎和叶的生长以及组织结构的影响,结果显示,表达GA20-氧化酶基因能显著提高毛白杨茎的生长,但是对根系的生长带来负面影响.同时,超量表达GA20-氧化酶基因促进了毛白杨茎木质部的生长,抑制了韧皮部和皮层的生长.研究结果表明GA20-氧化酶基因在毛白杨遗传改良中具有一定的应用价值.  相似文献   

17.
Lignin is one of the main factors determining recalcitrance to processing of lignocellulosic biomass towards bio-based materials and fuels. Consequently, wood of plants engineered for low lignin content is typically more amenable to processing. However, lignin-modified plants often exhibit collapsed vessels and associated growth defects. Vessel-specific reintroduction of lignin biosynthesis in dwarfed low-lignin cinnamoyl-CoA reductase1 (ccr1) Arabidopsis mutants using the ProSNBE:AtCCR1 construct overcame the yield penalty while maintaining high saccharification yields, and showed that monolignols can be transported between the different xylem cells acting as ‘good neighbors’ in Arabidopsis. Here, we translated this research into the bio-energy crop poplar. By expressing ProSNBE:AtCCR1 into CRISPR/Cas9-generated ccr2 poplars, we aimed for vessel-specific lignin biosynthesis to: (i) achieve growth restoration while maintaining high saccharification yields; and (ii) study the existence of ‘good neighbors’ in poplar wood. Analyzing the resulting ccr2 ProSNBE:AtCCR1 poplars showed that vessels and rays act as good neighbors for lignification in poplar. If sufficient monolignols are produced by these cells, monolignols migrate over multiple cell layers, resulting in a restoration of the lignin amount to wild-type levels. If the supply of monolignols is limited, the monolignols are incorporated into the cell walls of the vessels and rays producing them and their adjoining cells resulting in fiber hypolignification. One such fiber-hypolignified line had 18% less lignin and, despite its small yield penalty, had an increase of up to 71% in sugar release on a plant base upon saccharification.  相似文献   

18.
Arend M  Stinzing A  Wind C  Langer K  Latz A  Ache P  Fromm J  Hedrich R 《Planta》2005,223(1):140-148
In previous studies, we have shown that annual expression profiles of cambial and wood tissue with respect to the Shaker K+ channel PTORK correlate with cambial activity. To follow PTORK-gene activity on the cellular level, we isolated the respective promoter regions and generated transgenic Arabidopsis plants expressing the GUS gene under the control of the PTORK promoter. Cross-sections of petioles showed PTORK-driven signals predominantly in the xylem parenchyma surrounding the vessels and in the phloem. Antibodies raised against a unique N-terminal region of PTORK in histo-immunochemical analyses recognised this K+-release channel in growth-active poplar plants only. PTORK labelling was found in differentiating xylem cells (young fibres) and mature xylem (vessel-associated cells of the ray parenchyma). Patch-clamp measurements on fibre cell protoplasts, derived from young poplar twigs, identified outward-rectifying K+ channels as the major K+ conductance of this cell type, which resembled the biophysical properties of PTORK when expressed in Xenopus oocytes.Electronic Supplementary Material Supplementary material is available for this article at Matthias Arend and Andrea Stinzing contributed equally to this work  相似文献   

19.
Comparative ultrastructural analysis of the conducting and non-conducting phloem cells in the common straight-grained silver birch (Betula pendula var. pendula) and the Karelian birch (B. pendula var. carelica) with abnormal patterned wood was carried out, leading to the conclusion that there is an elevated sucrose content in the conducting phloem of the Karelian birch. A connection between sucrose levels and formation of abnormalities in the development of conducting tissues in the Karelian birch trunk was surmised. Experiments in which exogenous sucrose was applied to the silver birch trunk tissues have demonstrated the effects of different sucrose concentrations (0 g L−1, 10 g L−1, 25 g L−1, 50 g L−1, 100 g L−1) on the formation of xylem and phloem structural elements, and they yielded the types of tissue development that correspond to the abnormal tissue development in the Karelian birch trunk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号