首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

2.
1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.  相似文献   

3.
We isolated several strains of Saccharomyces cerevisiae containing mutations mapping at a single chromosomal gene (spe10); these strains are defective in the decarboxylation of L-ornithine to form putrescine and consequently do not synthesize spermidine and spermine. The growth of one of these mutants was completely eliminated in a polyamine-deficient medium; the growth rate was restored to normal if putrescine, spermidine, or spermine was added. spe10 is not linked to spe2 (adenosylmethionine decarboxylase) or spe3 (putrescine aminopropyltransferase [spermidine synthease]). spe 10 is probably a regulatory gene rather than the structural gene for ornithine decarboxylase, since we isolated two different mutations which bypassed spe10 mutants; these were spe4, an unliked recessive mutation, and spe40, a dominant mutation linked to spe10. Both spe4 and spe40 mutants exhibited a deficiency of spermidine aminopropyltransferase (spermine synthase), but not of putrescine aminopropyltransferase. This suggests that ornithine decarboxylase activity is negatively controlled by the presence of spermidine aminopropyltransferase.  相似文献   

4.
5.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

6.
The stimulation of lymphocyte ornithine decarboxylase and adenosylmethionine decarboxylase produced by phytohaemagglutinin was accompanied by an equally marked, but delayed, stimulation of spermidine synthase, which is not commonly considered as an inducible enzyme. In contrast with the marked stimulation of these biosynthetic enzymes, less marked changes were observed in the biodegradative enzymes of polyamines in response to phytohaemagglutinin. Diamine oxidase activity was undetectable during all stages of the transformation. The activity of polyamine oxidase remained either constant or was slightly decreased several days after addition of the mitogen. The activity of polyamine acetylase (employing all the natural polyamines as substrates) distinctly increased both in the cytosolic and crude nuclear preparations of the cells during later stages of mitogen activation. Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, although powerfully inhibiting ornithine decarboxylase, produced a gradual enhancement of adenosylmethionine decarboxylase activity during lymphocyte activation, without influencing the activities of the two propylamine transferases (spermidine synthase and spermine synthase).  相似文献   

7.
8.
A number of nucleosides related to S-adenosylmethionine were tested for their inhibitory action on three enzymes involved in the biosynthesis of polyamines. The particular objective of the experiments was to determine whether any of the compounds could be used as selective inhibitors of the synthesis of spermine by spermine synthase. None of the nucleosides examined were potent inhibitors of S-adenosylmethionine decarboxylase. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine dihydrochloride was quite a strong inhibitor of spermidine synthase (I50 of 7 microM) but was more than an order of magnitude less active than S-adenosyl-1,8-diamino-3-thiooctane, which is a mechanism-based inhibitor of this enzyme. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine also inhibited spermine synthase with an I50 of 17 microM, but more selective inhibition of spermine synthase was produced by 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine (I50 of 12 microM) and by dimethyl(5'-adenosyl)sulfonium perchlorate (I50 of 8 microM) since these compounds were much less active against spermidine synthase. Both 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine and dimethyl(5'-adenosyl)sulfonium perchlorate were able to reduce the synthesis of spermine in SV-3T3 cells, but there was a compensatory increase in the concentration of spermidine, and there was no effect on cell growth. These results and those from experiments in which these spermine synthesis inhibitors were combined with inhibitors of spermidine synthase and ornithine decarboxylase indicated that the cells compensated for the inhibition of the aminopropyltransferases by increasing the production of decarboxylated S-adenosylmethionine and putrescine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

10.
Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism   总被引:3,自引:0,他引:3  
A E Pegg  K C Tang  J K Coward 《Biochemistry》1982,21(20):5082-5089
Exposure of mammalian cells (transformed mouse fibroblasts or rat hepatoma cells) to S-adenosyl-1,8-diamino-3-thiooctane produced profound changes in the intracellular polyamine content. Putrescine was increased and spermidine was decreased, consistent with the inhibition of spermidine synthase by this compound, which is a potent and specific "transition-state analogue inhibitor" of the isolated enzyme in vitro. The spermine content of the cells was increased by exposure to this drug presumably since spermine synthase was able to use a greater proportion of the available decarboxylated S-adenosylmethionine when spermidine synthase was inhibited. The decarboxylated S-adenosylmethionine content rose substantially because the activity of S-adenosylmethionine decarboxylase was increased in response to the decline in spermidine. These results indicate that S-adenosyl-1,8-diamino-3-thiooctane is taken up by mammalian cells and is an effective inhibitor of spermidine synthase in vivo and that S-adenosylmethionine decarboxylase is regulated by the content of spermidine, but not of spermine. The growth of SV-3T3 cells was substantially reduced in the presence of S-adenosyl-1,8-diamino-3-thiooctane at concentrations of 50 microM or greater. Such inhibition was reversed by the addition of spermidine but not by putrescine. When SV-3T3 cells were exposed to 5 mM alpha-(difluoromethyl)ornithine and 50 microM S-adenosyl-1,8-diamino-3-thiooctane, the content of all polyamines was reduced. Putrescine and spermidine declined by more than 90% and spermine by 80%. Such cells grew very slowly unless spermidine was added.  相似文献   

11.
The effect of spermidine and spermine on the translation of the mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase was studied using a reticulocyte lysate system and specific antisera to precipitate these proteins. It was found that the synthesis of these key enzymes in the biosynthesis of polyamines was much more strongly inhibited by the addition of polyamines than was either total protein synthesis or the synthesis of albumin. Translation of the mRNA for S-adenosylmethionine decarboxylase was maximal in a lysate which had been substantially freed from polyamines by gel filtration. Addition of 80 microM spermine had no significant effect on total protein synthesis and stimulated albumin synthesis but reduced the production of S-adenosylmethionine decarboxylase by 76%. Similarly, addition of 0.8 mM spermidine reduced the synthesis of S-adenosylmethionine decarboxylase by 82% while albumin and total protein synthesis were similar to that found in the gel-filtered lysate. Translation of ornithine decarboxylase mRNA was greater in the gel-filtered lysate than in the control lysate but synthesis of ornithine decarboxylase was stimulated slightly by low concentrations of polyamines and was maximal at 0.2 mM spermidine or 20 microM spermine. Higher concentrations were strongly inhibitory with a 70% reduction occurring at 0.8 mM spermidine or 150 microM spermine. Further experiments in which both polyamines were added together confirmed that the synthesis of ornithine and S-adenosylmethionine decarboxylases were much more sensitive to inhibition by polyamines than protein synthesis as a whole. These results indicate that an important part of the regulation of polyamine biosynthesis by polyamines is due to a direct inhibitory effect of the polyamines on the translation of mRNA for these biosynthetic enzymes.  相似文献   

12.
Polyamine levels of some helminth parasites were analyzed by reverse phase HPLC of benzoyl derivatives. Setaria cervi, Acanthocheilonema viteae, Hymenolepis nana, H. diminuta, and Ascaridia galli contained higher levels of spermine than spermidine while in Ancylostoma ceylanicum and Nippostrongylus brasiliensis the spermidine levels were higher than spermine; putrescine was either absent or present in minor quantities. The enzymes of polyamine biosynthesis viz., ornithine decarboxylase, S-adenosyl methionine (SAM)-decarboxylase, and arginine decarboxylase were present in very low to negligible amounts in all the parasites examined. A. ceylanicum exhibited high activity of ornithine amino transferase (OAT) and catalyzed appreciable decarboxylation of ornithine. The ornithine decarboxylating activity of A. ceylanicum was localized in the particulate fraction containing mitochondria, not inhibited by alpha-difluoromethyl ornithine, the specific inhibitor of ornithine decarboxylase (ODC), but inhibited in the presence of glutamate, suggesting the involvement of mitochondrial OAT rather than a true ODC in ornithine decarboxylation in this parasite. Significant activity of polyamine oxidase was also detected in helminth parasites. The absence of polyamine biosynthesizing enzymes in helminth parasites suggests their dependence on hosts for uptake and interconversion of polyamines, providing a potential target for chemotherapy.  相似文献   

13.
Polyamine metabolism and cancer   总被引:7,自引:0,他引:7  
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.  相似文献   

14.
5′-Methylthioadenosine and four 5′-alkylthiotubercidins were tested for their ability to inhibit polyamine synthesis in vitro and to decrease polyamine concentration and prevent growth of baby-hamster-kidney (BHK21) cells. 5′-Methylthioadenosine and 5′-methylthiotubercidin decreased the activity of spermidine synthase from brain to roughly the same extent, whereas brain spermine synthase was much more strongly inhibited by 5′-methylthioadenosine compared with 5′-methylthiotubercidin. These nucleoside derivatives also inhibited the growth of BHK21 cells and increased the concentration of putrescine. 5′-Methylthioadenosine decreased cellular spermine concentration, whereas 5′-methylthiotubercidin lowered the concentration of spermidine. The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were enhanced in cells grown in the presence of 5′-methylthiotubercidin. The growth inhibition produced by these nucleoside derivatives was not reversed by exogenous spermidine or spermine. 5′-Ethylthiotubercidin, 5′-propylthiotubercidin and 5′-isopropylthiotubercidin did not appreciably inhibit spermidine or spermine synthase in vitro or decrease the cellular polyamine content, but effectively prevented the growth of BHK21 cells. All nucleoside derivatives at concentrations of 0.2–1 mm caused a rapid inhibition of protein synthesis. It is concluded that the growth inhibition produced by 5′-methylthioadenosine and 5′-alkylthiotubercidins was not primarily due to polyamine depletion but other target sites, for instance the cellular nucleotide pool, cell membranes etc. must be considered.  相似文献   

15.
The effects of the putrescine analogue 1-aminooxy-3-aminopropane on fungal polyamine metabolism were evaluated using Sclerotinia sclerotiorum as an experimental model. The compound inhibited ornithine decarboxylase, spermidine synthase, and S -adenosyl-methionine decarboxylase in mycelial extracts. Addition of 1-aminooxy-3-aminopropane at 1 mM to the culture medium did not reduce mycelial growth and caused a 29% decrease in free spermidine and a two-fold increase in free spermine. When added 4.5 h before the determination of ornithine decarboxylase, 1-aminooxy-3-aminopropane reduced in vivo activity of this enzyme by 40–50%. When added 48 h before the determination, 1-aminooxy-3-aminopropane at 0.01 and 0.1 mM caused a slight increase of in vivo ornithine decarboxylase activity, while it had no effect at 1 mM. Comparison of the action of 1-aminooxy-3-aminopropane with that of other inhibitors of polyamine biosynthesis suggested that its effects on in vivo ornithine decarboxylase activity resulted from a balance between direct inhibition of enzyme activity and indirect stimulation of enzyme synthesis and/or activity mediated by the decrease in spermidine levels, which in turn was due to inhibition of spermidine synthase and S -adenosyl-methionine decarboxylase. The potential of 1-aminooxy-3-aminopropane as a tool for studies on fungal polyamine metabolism and for the control of plant diseases of fungal origin is discussed.Abbreviations AdoMetDC S-Adenosyl-methionine decarboxylase - DFMO -Difluoromethylornithine - MGBG Methylglyoxal bis-[guanyl hydrazone] - ODC Ornithine decarboxylase  相似文献   

16.
When exposed to hypotonic growth medium, Ehrlich ascites carcinoma cells showed a rapid stimulation of ornithine decarboxylase (EC 4.1.1.17) activity in 4 h, followed by a rise in their putrescine content. This effect was totally abolished by addition of a slightly hypertonic concentration of sodium chloride or sucrose to the medium. The general protein synthesis was unaffected by the hypotonic treatment. The uptake of putrescine and, to a lesser extent, spermidine was enhanced, and the conversion of the radioactive putrescine into spermidine appeared partially inhibited during later stages of the hypotonic treatment. As a result, the half-life of putrescine increased from 2.8 h under isoosmotic conditions to 7.3 h in hypoosmotic medium. Both exogenous ([14C]-putrescine-derived) and endogenous ([14C]ornithine-derived) putrescine degraded at similar rates in control and hypotonic cells, yet the putrescine taken from the medium degraded preferably to nonpolyamine products, while the putrescine synthesized in the cell was converted evenly to spermidine and to other metabolites. Adenosylmethionine decarboxylase activity (EC 4.1.1.50), which provides the second precursor for spermidine and spermine synthesis, was distinctly inhibited in the hypotonic medium. Inhibition was likewise observed in spermidine synthase activity, while spermine synthase was marginally stimulated. It appears that the hypotonic treatment serves a special condition under which not only the formation of putrescine is enhanced dramatically but the cells also attempt to conserve the diamine by preventing its further metabolism to higher polyamines.  相似文献   

17.
Changes in the activity of choline kinase were measured in the cerebellum during development. Early transient increase was found in the enzyme activity just prior to and during birth. This period of increase did not coincide with the periods of transient elevation in ornithine decarboxylase and choline acetyltransferase previously observed in the developing cerebellum. The effects of the naturally occurring polyamines (putrescine, spermidine, and spermine) on choline kinase and choline acetyltransferase activities, and of phosphorylcholine (the product of the reaction catalyzed by choline kinase) on ornithine decarboxylase and choline acetyltransferase activities, were also examined. Choline acetyltransferase activity was not influenced by either polyamines or phosphorylcholine. However, choline kinase activity from 7-day-old, but not from adult, cerebellum was increased 25% in the presence of 4 mM spermine. In contrast, low spermidine concentrations (less than 2 mM) inhibited choline kinase activity selectively in 7-day-old cerebellum. Ornithine decarboxylase activity from 7-day-old cerebellum was inhibited in a concentration-dependent manner by phosphorylcholine. The present data together with other previous reports suggest that: (a) polyamines may play a role in choline utilization during development via their regulation of choline kinase activity, on the one hand, and of acetylcholinesterase activity on the other; and (b) during development, a reciprocal regulation of choline kinase and ornithine decarboxylase activities by their respective reaction products may exist, whereby choline kinase activity is regulated in a complex manner by polyamines and, in turn, ornithine decarboxylase is inhibited by phosphorylcholine.  相似文献   

18.
Abstract— The concentrations of putrescine and the polyamines, spermidine and spermine, along with the specific activities of the enzymes involved in their biosynthesis, ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase have been measured in brain and liver of the developing Rhesus monkey from mid-gestation, through birth and neonatal life to maturity. The results suggest that it is an increased concentration of putrescine and an increased specific activity of ornithine decarboxylase which are associated with the rapid growth of fetal brain during the middle of gestation. By the end of two-thirds of gestation, both of these parameters have attained values similar to those found in mature brain. The concentration of spermidine in brain and the specific activities of S -adenosylmethionine decarboxylase and spermidine synthase are lower in fetal brain than adult brain and increase slowly after birth to reach values similar to those of the adult only after several months. These results provide additional evidence that in the mature brain spermidine serves some function other than one associated with rapid growth.
Fetal liver at mid-gestation was characterized by increased concentrations of both putrescine and spermidine and increased specific activities of the enzymes which synthesize them. By two-thirds of gestation, values similar to those found in adult liver had been attained. Liver has thus reached maturity with regard to polyamine metabolism by this time.  相似文献   

19.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

20.
2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号