首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relatively little is known about fish species interactions in offshore areas of the world’s oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters.  相似文献   

2.
Feeding rate experiments were conducted for pink salmon Oncorhynchus gorbuscha fry [mean fork length ( L F) 39 mm], juveniles (103–104 mm L F) and juvenile chum salmon Oncorhynchus keta (106–107 mm L F). Fishes were presented with small copepod ( Tisbi sp.) or larger mysid shrimp ( Mysidopsis bahia ) prey at varying densities ranging from 1 to 235 prey l−1 in feeding rate experiments conducted at water temperatures ranging from 10·5 to 12·0° C under high light levels and low turbidity conditions. Juvenile pink and chum salmon demonstrated a type II functional response to mysid and copepod prey. Mysid prey was readily selected by both species whereas the smaller bodied copepod prey was not. When offered copepods, pink salmon fry fed at a higher maximum consumption rate (2·5 copepods min−1) than larger juvenile pink salmon (0·4 copepods min−1), whereas larger juvenile chum salmon exhibited the highest feeding rate (3·8 copepods min−1). When feeding on mysids, the maximum feeding rate for larger juvenile pink (12·3 mysids min−1) and chum (11·5 mysids min−1) salmon were similar in magnitude, and higher than feeding rates on copepods. Functional response models parameterized for specific sizes of juvenile salmon and zooplankton prey provide an important tool for linking feeding rates to ambient foraging conditions in marine environments, and can enable mechanistic predictions for how feeding and growth should respond to spatial-temporal variability in biological and physical conditions during early marine life stages.  相似文献   

3.
4.
In total, 23,750 specimens of the salmon louse, Lepeophtheirus salmonis, were collected from 3,907 juvenile pink and 3,941 chum salmon caught within the Broughton Archipelago during a 2-yr survey. The prevalence on pink salmon was significantly higher than on chum salmon in 2004 (62.3% and 58.6%, respectively) and in 2005 (26.4% and 23.1%, respectively). The mean abundance on chum salmon was significantly higher than on pink salmon in 2004 (7.0 +/- 0.3 and 2.8 +/- 0.2, respectively), whereas in 2005 the mean abundance did not differ between species (0.6 +/- 0.1 and 0.5 +/- 0.0, respectively). The mean intensity on chum salmon was significantly higher than on pink salmon in 2004 (12.0 +/- 0.4 and 4.5 +/- 0.2, respectively) and in 2005 (2.5 +/- 0.2 and 1.7 +/- 0.1, respectively). The prevalence, intensity, and abundance of L. salmonis were significantly higher on salmon belonging to both host species in 2004 compared with 2005. In both years, a majority of pink and chum salmon had 2 or fewer lice. In general, a decline in abundance of L. salmonis over the 3 collection periods in each year coincided with an increased percentage of motile developmental stages. The abundance was lowest on fish collected from zones in which the seawater surface salinity was also lowest. Seawater surface temperature was higher and salinity was lower in 2004 compared with 2005. The spatial and temporal trends in the abundance of L. salmonis in relation to host size, infestation rates, and seawater salinity and temperature, evident in both years, must be considered in future studies assessing the role of farmed salmon in the epizootiology of this parasite on juvenile salmon in this area.  相似文献   

5.
Parasites seldom have predators but often fall victim to those of their hosts. How parasites respond to host predation can have important consequences for both hosts and parasites, though empirical investigations are rare. The exposure of wild juvenile salmon to sea lice (Lepeophtheirus salmonis) from salmon farms allowed us to study a novel ecological interaction: the response of sea lice to predation on their juvenile pink and chum salmon hosts by two salmonid predators-coho smolts and cut-throat trout. In approximately 70% of trials in which a predator consumed a parasitized prey, lice escaped predation by swimming or moving directly onto the predator. This trophic transmission is strongly male biased, probably because behaviour and morphology constrain female movement and transmission. These findings highlight the potential for sea lice to be transmitted up marine food webs in areas of intensive salmon aquaculture, with implications for louse population dynamics and predatory salmonid health.  相似文献   

6.
Summary The zona radiata from unactivated and activated eggs from chinook salmon (Oncorhynchus tshawytscha), chum salmon (O. kisutch), pink salmon (O. gorbuscha), brown trout (Salmo trutta), rainbow trout (S. gairdneri) and lake trout (Salvelinus namaycush) were examined using scanning and transmission microscopy. The zona radiata in all species examined consisted of an outer adhesive coating, a thin densely staining zona radiata externa with pore canal plugs and a thick, fibrous zona radiata interna with a fibrous network on the inner surface. There was a two layer adhesive coating over the zona radiata externa in all species except pink salmon in which only one layer was observed. There were structural differences among species in the adhesive layer, zona radiata externa and plugs in the pore-canal openings.Scientific Journal Series, Paper No. 14,627, Minnesota Agricultural Experiment StationPartially funded by Minnesota Sea Grant NA-82-AA 12-000-39, Project RF-12, Minnesota Sea Grant Contribution 168  相似文献   

7.
《Journal of morphology》2017,278(7):948-959
Mature male Pacific salmon (Genus Oncorhynchus ) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka ) and pink (O. gorbuscha ) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou ), sockeye, chum (O. keta ), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less‐pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue.  相似文献   

8.
Pacific salmon (Oncorhynchus spp.) play an important role as a keystone species and provider of ecosystem services in the North Pacific ecosystem. We review our studies on recent production trends, marine carrying capacity, climate effects and biological interactions between wild and hatchery origin populations of Pacific salmon in the open sea, with a particular focus on Japanese chum salmon (O. keta). Salmon catch data indicates that the abundance of Pacific salmon increased since the 1976/77 ocean regime shift. Chum and pink salmon (O. gorbuscha) maintained high abundances with a sharp increase in hatchery-released populations since the late 1980s. Since the 1990s, the biomass contribution of hatchery returns to the total catch amounts to 50% for chum salmon, more than 10% for pink salmon, and less than 10% for sockeye salmon (O. nerka). We show evidence of density-dependence of growth and survival at sea and how it might vary across spatial scales, and we provide some new information on foraging plasticity that may offer new insight into competitive interactions. The marine carrying capacity of these three species is synchronized with long-term patterns in climate change. At the present time, global warming has positively affected growth and survival of Hokkaido populations of chum salmon. In the future, however, global warming may decrease the marine carrying capacity and the area of suitable habitat for chum salmon in the North Pacific Ocean. We outline future challenges for salmon sustainable conservation management in Japan, and recommend fishery management reform to sustain the hatchery-supported salmon fishery while conserving natural spawning populations.  相似文献   

9.
Age‐related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas.  相似文献   

10.
The efficiency of reproduction of Pacific salmon (Oncorhynchus) in the rivers of the northeastern Sakhalin coast is characterized based on long-term observations. The rivers of the northern, central, and southern parts differ in the type of their channel, faunistic composition of aquatic biota, and prevalent salmon species. The northern rivers have a plain type of channel with rather low spawning efficiency of salmons and relatively poor freshwater ichthyofauna. The central area houses the largest rivers (Tym’ and Nabil’ Rivers) running to the Nyiskii and Nabil’skii Gulfs; the rivers there have developed channels of a plain type, high diversity of resident ichthyofauna, low spawning efficiency of the pink salmon Oncorhynchus gorbuscha, and high (in the past) abundance of the fall chum salmon O. keta. Characteristic of the southern rivers with their prevalently mountain–foothill type of channels are poor fish population and high spawning efficiency of the pink salmon. The population dynamics of the salmonids in the northeastern coast of Sakhalin is described. The total number of breeders entering the rivers of the northeastern coast that provides an efficient reproduction is estimated as 3.5?9.0 million individuals for the pink salmon and 0.04–0.60 million individuals for the chum salmon (fall race).  相似文献   

11.
Short interspersed repetitive elements (SINEs), known as theHpaI family, are present in the genomes of all salmonid species (Kido et al.,Proc. Natl. Acad. Sci. USA 1991, 88: 2326–2330). Recently, we showed that the retropositional efficiency of the SINE family in the lineage of chum salmon is extraordinarily high in comparison with that in other salmonid lineages (Takasaki et al.,Proc. Natl. Acad. Sci. USA 1994, 91: 10153–10157). To investigate the reason for this high efficiency, we searched for members of theHpaI SINE family that have been amplified species-specifically in pink salmon. Since the efficiency of the species-specific amplification in pink salmon is not high and since other members of the same subfamily of SINEs were also amplified species-specifically in pink salmon, the actual sequence of this subfamily might not be the cause of the high retropositional efficiency of SINEs in chum salmon. Rather, it appears that a highly dominant source gene for the subfamily may have been newly created by retroposition, and some aspect of the local environment around the site of retroposition may have been responsible for the creation of this dominant source gene in chum salmon. Furthermore, a total of 11 sequences ofHpaI SINEs that have been amplified species-specifically in three salmon lineages was compiled and characterized. Judging from the distribution of members of the same-sequence subfamily of SINEs in different lineages and from the distribution of the different-sequence subfamilies in the same lineage, we have concluded that multiple dispersed loci are responsible for the amplification of SINEs. We also discuss the additional possibility of horizontal transmission of SINEs between species. The availability of the sets of primers used for the detection of the species-specific amplifications of the SINEs provides a convenient and reliable method for identification of these salmonid species.  相似文献   

12.
The straying of hatchery salmon may harm wild salmon populations through a variety of ecological and genetic mechanisms. Surveys of pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon in wild salmon spawning locations in Prince William Sound (PWS), Alaska since 1997 show a wide range of hatchery straying. The analysis of thermally marked otoliths collected from carcasses indicate that 0–98% of pink salmon, 0–63% of chum salmon and 0–93% of sockeye salmon in spawning areas are hatchery fish, producing an unknown number of hatchery-wild hybrids. Most spawning locations sampled (77%) had hatchery pink salmon from three or more hatcheries, and 51% had annual escapements consisting of more than 10% hatchery pink salmon during at least one of the years surveyed. An exponential decay model of the percentage of hatchery pink salmon strays with distance from hatcheries indicated that streams throughout PWS contain more than 10% hatchery pink salmon. The prevalence of hatchery pink salmon strays in streams increased throughout the spawning season, while the prevalence of hatchery chum salmon decreased. The level of hatchery salmon strays in many areas of PWS are beyond all proposed thresholds (2–10%), which confounds wild salmon escapement goals and may harm the productivity, genetic diversity and fitness of wild salmon in this region  相似文献   

13.
Nagasawa  Sachiko 《Hydrobiologia》1988,167(1):255-258
Adult specimens of the calanoid copepod Centropages abdominalis collected from February through April 1986 in Shinhamako, a saline lake connected to Tokyo Bay, were heavily infested with the stalked ciliate Zoothamnium. The number of copepods and those infested varied during the infestation period; in February when the copepod population was large, the incidence of infestation was low, whereas in March when the copepod population was small, copepods infested with Zoothamnium were proportionally more abundant. Numerical variations of infested copepods may correspond to changes in the Zoothamnium population. No specimens of Acartia omorii, which coexists with C. abdominalis, were infested in 1986, although a small number of A. omorii were infested with peritrich ciliates in 1985. Some shrimp larvae were also covered with the same peritrichs as copepods. Nevertheless, as a whole, the relationship between the phoront and its carrier seems to be specific. The highest incidence of infested copepods was approximately 30% similar to that in 1985. The sex ratio of C. abdominalis changed on each sampling date but in general females were more numerous than males. The percentage of infested males was higher than that of infested females, suggesting that the former can be attached to more easily than the latter.  相似文献   

14.
A total of 2164 common hake Merluccius hubbsi captured in the Argentine-Uruguayan Common Fishing Zone was examined for parasitic copepods. The fish were infested with Chondracanlhus palpifer and Neobrachietia insidiosa f. lageniformis, the former parasitizing the buccal cavity and the latter the branchial arches. C. palpifer showed an increase in both prevalence and intensity in relation to the host size; infestation with N. insidiosa f. lageniformis decreased with increasing length of hake. Attachment site preferences and variations in the parasite distribution patterns as related to the host biology were observed. Evidence of negative association between copepod species and seasonal changes in the parasite composition was also found.  相似文献   

15.
In mid-May 2022, pink salmon Oncorhynchus gorbuscha smolts were caught in the rivers Botnsá, Grímsá, and Langá in Iceland. This observation provides the first evidence of successful spawning and the completion of the freshwater phase of the life cycle in Icelandic rivers. It is the most western record of O. gorbuscha smolts in Europe, further west than Russia, Norway, and the UK. Smolts originating from Iceland potentially support the recruitment of this species in the North Atlantic and may lead to the establishment of a self-sustaining population in Iceland.  相似文献   

16.
Seasonal, ontogenetic, and diel variations in the diets of chum salmon, Oncorhynchus keta, were examined by analyzing the stomach contents of 1398 fish (300–755 mm fork length) collected in the Bering Sea during summer and early autumn of 2002. Whereas mesozooplankton, including euphausiids, hyperiids, and gastropods, constituted the greatest portion of the stomach contents during the summer, forage fishes (Stenobrachius leucopsarus and Atka mackerel, Pleurogrammus monopterygius) were the most important items during early autumn. Although no apparent diel trend was found in feeding intensity, distinct diel differences in prey composition were observed. Chum salmon caught in the morning contained Stenobrachius leucopsarus, whereas those caught in the afternoon had mainly fed on euphausiids. Thus, chum salmon diets change temporally because of changes in prey availability that result from differences in the annual life cycles and diurnal vertical migrations of prey species.  相似文献   

17.
The population dynamics of a coastal mysid community was examined at One Tree Point in southern Tasmania over a 12-month period, including three 24-hour sampling sessions. Fourteen mysid species were recorded. Zonation patterns, life-history and diel activity of the three most abundant species, Tenagomysis tasmaniae, Anisomysis mixta australis and Paramesopodopsis rufa were examined. These three species were found in large numbers throughout the year associated with the macroalgal fringe on either side of the bay. Habitat partitioning within this zone of occurrence was evident. T. tasmaniae was the most abundant species (annual mean density 32.4 m–3), followed by A. mixta australis (annual mean density 20.5 m–3 ) and P. rufa (annual mean density 11.3 m–3). The major peaks of abundance of these three species were temporally separate. Breeding was intensive for the three species from spring till late autumn. A cessation of breeding in winter was evident for A. mixta australis and to a lesser extent for P. rufa but T. tasmaniae bred throughout the year although at a reduced rate during winter. Examination of the diel behaviour identified peaks of abundance at sunrise and sunset for T. tasmaniae; P. rufa was caught in greater numbers at night, but no consistent pattern was observed for A. mixta australis.  相似文献   

18.
Interannual variability of body length, body weight, age structure, and seasonal growth rate of Anadyr chum salmon Oncorhynchus keta was studied using the monitoring data obtained in 1962–2010 in Anadyr River and Anadyr Firth. Body size of spawning adults has decreased significantly for the decade of 1990–2000s compared to the period of 1960–1970s, and the ratio of elder specimens was higher. Annual growth dynamics showed different patterns. Estimated from measuring intersclerite distances on scales, first-year growth of Anadyr chum salmon samples collected in 1962 to 2007 was enhanced. After the first year, growth was reduced. The greatest reduction occurred in the third and forth years. Analysis of seasonal growth of scale evidences to the relaxation of the growth rates of Anadyr chum salmon after the first year of life preconditioned by both the over-wintering and foraging period. These data are in contradiction with the wide-spread suggestion of decreasing of chum salmon body length during winter due to bad feeding conditions. According to the similarity of the dynamics of body length and growth rates of chum salmon and pink salmon O. gorbuscha observed for the last decades, we assume that this may be preconditioned by the same large-scale limiting factors that affect similarly these salmon species inhabiting vast areas. Our data do not support the idea about high-density population of chum salmon as a main factor affecting the productivity characteristics of this species in the northern Pacific Ocean in the second half of the 20th-beginning of the 21st century. Reasons for decrease of chum salmon body length are discussed.  相似文献   

19.
Planktonic copepods play a major role in the fluxes of matter and energy in the marine ecosystem, provide a biological pump of carbon into the deep ocean, and play a role in determining fish recruitment. Owing to such ecological considerations, it is essential to understand the role that climate might play in the interannual variability of these organisms and the mechanisms by which it could modify the ecosystem functioning. In this study, a causal chain of meteorological, hydrological and ecological processes linked to the North Atlantic Oscillation (NAO) was identified in the Ligurian Sea, Northwestern Mediterranean. The forcing by the NAO drives most of the hydro-climatic variability during winter and early spring. Subsequently, interannual and decadal changes of the dominant copepods Centropages typicus and Temora stylifera were significantly correlated to the state of the hydro-climatic signal and tightly coupled to the NAO. Direct and indirect effects whose influence promoted phenological changes in the two copepod populations drove the species’ responses to climatic forcing. Opposite responses of the analysed species were also highlighted by these results. While years characterized by the positive phase of the NAO leads to enhancement of the strength and the forward move of the C. typicus peak, they act negatively on the annual cycle of T. stylifera, the abundance of which drops twofold and the annual peak appears delayed in time. In contrast, low NAO years lead to high abundance of T. stylifera and a forward timing of its peak, and acts in turn negatively on the C. typicus annual cycle in both abundance (low) and timing (delayed). Owing to the synchronism between hydro-climatic conditions and the NAO, and the major role of these species in the pelagic ecosystem of the studied area, these results provide key elements for interpreting and forecasting decadal changes of planktonic populations in the Ligurian Sea.  相似文献   

20.
The migratory behavior and swimming patterns of anadromous upstream migratory fish have been poorly described in the Shibetsu River in eastern Hokkaido, Japan. In this 2004 study, we used electromyogram (EMG) transmitters and depth/ temperature (DT) loggers to compare the upstream migratory behavior of adult male chum salmon (Oncorhynchus keta) and pink salmon (O. gorbuscha) in the canalized and reconstructed segments of the Shibetsu River, where a part of canalized section was preliminary reconstructed meander to restore a more natural section. The EMG transmitter and DT logger were externally attached to the left side of the body, below the front edge of the dorsal fin. Fish of both species often migrated along the riverbanks and near the bottom of the water column, sometimes engaged in holding behavior, which was defined as cessation of swimming during their upstream migration for 5 minutes. Modal swimming depth calculated by DT loggers for chum salmon (0.2–0.4 m) was shallower than pink salmon (0.6–0.8 m). Further, modal swimming speeds measured by calibrated EMG for chum salmon (0.2–0.4 BL s−1) were slower than pink salmon (1.2–1.4 BL s−1). Pink salmon swam faster as well as in relatively deeper than chum salmon, suggesting that they expend more energy than chum salmon in the reconstructed segment. Based on these results, it seemed likely that the upstream migration behavior of chum and pink salmon was different with species-specific strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号