首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Lee J  Cordaux R  Han K  Wang J  Hedges DJ  Liang P  Batzer MA 《Gene》2007,390(1-2):18-27
The long interspersed element-1 (LINE-1 or L1) is a highly successful retrotransposon in mammals. L1 elements have continued to actively propagate subsequent to the human–chimpanzee divergence,  6 million years ago, resulting in species-specific inserts. Here, we report a detailed characterization of chimpanzee-specific L1 subfamily diversity and a comparison with their human-specific counterparts. Our results indicate that L1 elements have experienced different evolutionary fates in humans and chimpanzees within the past  6 million years. Although the species-specific L1 copy numbers are on the same order in both species (1200–2000 copies), the number of retrotransposition-competent elements appears to be much higher in the human genome than in the chimpanzee genome. Also, while human L1 subfamilies belong to the same lineage, we identified two lineages of recently integrated L1 subfamilies in the chimpanzee genome. The two lineages seem to have coexisted for several million years, but only one shows evidence of expansion within the past three million years. These differential evolutionary paths may be the result of random variation, or the product of competition between L1 subfamily lineages. Our results suggest that the coexistence of several L1 subfamily lineages within a species may be resolved in a very short evolutionary period of time, perhaps in just a few million years. Therefore, the chimpanzee genome constitutes an excellent model in which to analyze the evolutionary dynamics of L1 retrotransposons.  相似文献   

2.
The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.  相似文献   

3.
Summary Comparative analysis of the available 3′-portions of the human L1 (LINE-1) family of repeated sequences indicates that all the sequences can be classified in two major subfamilies. The division is based on patterns of diagnostic bases shared within L1 subfamilies of sequences but differing between them. The overall ratio of replacement to synonymous positions, occupied by the diagnostic bases in the large open reading frame of the L1 sequence, is 1.15. This indicates that both subfamilies were obtained from genes coding for functional proteins. The L1 subfamilies appear to be of different ages and may represent a “fossil record” of the same active gene at different times in the history of primates. The younger subfamily can be split further into at least two closely related branches of sequences. The above facts combined with the recent data for the Alu subfamily structure show that LINE and SINE families of interspersed repeats share discontinuous patterns in their evolution. These data are consistent with the model that both Alu and L1 families, as well as other pseudogene families, contain active genes producing discrete layers of pseudogenes throughout the history of primates. Models of evolutionary processes that could generate these discontinuities are discussed together with the possible biological role of Alu and L1 genes.  相似文献   

4.
Members of the Alu Yc1 subfamily are distinguished from the older Alu Y subfamily by a signature G-->A substitution at base 148 of their 281-bp consensus sequence. Members of the much older and larger Alu Y subfamily could have by chance accumulated this signature G-->A substitution and be misclassified as belonging to the Alu Yc1 subfamily. Using a Mahanalobis classification method, it was estimated that the "authentic" Alu Yc1 subfamily consists of approximately 262 members in the human genome. PCR amplification and further analysis was successfully completed on 225 of the Yc1 Alu family members. One hundred and seventy-seven Yc1 Alu elements were determined to be monomorphic (fixed for presence) in a panel of diverse human genomes. Forty-eight of the Yc1 Alu elements were polymorphic for insertion presence/absence in diverse human genomes. The insertion polymorphism rate of 21% in the human genome is similar to rates reported previously for other "young" Alu subfamilies. The polymorphic Yc1 Alu elements will be useful genetic loci for the study of human population genetics.  相似文献   

5.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

6.
The Ta (transcribed, subset a) subfamily of L1 LINEs (long interspersed elements) is characterized by a 3-bp ACA sequence in the 3' untranslated region and contains approximately 520 members in the human genome. Here, we have extracted 468 Ta L1Hs (L1 human specific) elements from the draft human genomic sequence and screened individual elements using polymerase-chain-reaction (PCR) assays to determine their phylogenetic origin and levels of human genomic diversity. One hundred twenty-four of the elements amenable to complete sequence analysis were full length ( approximately 6 kb) and have apparently escaped any 5' truncation. Forty-four of these full-length elements have two intact open reading frames and may be capable of retrotransposition. Sequence analysis of the Ta L1 elements showed a low level of nucleotide divergence with an estimated age of 1.99 million years, suggesting that expansion of the L1 Ta subfamily occurred after the divergence of humans and African apes. A total of 262 Ta L1 elements were screened with PCR-based assays to determine their phylogenetic origin and the level of human genomic variation associated with each element. All of the Ta L1 elements analyzed by PCR were absent from the orthologous positions in nonhuman primate genomes, except for a single element (L1HS72) that was also present in the common (Pan troglodytes) and pygmy (P. paniscus) chimpanzee genomes. Sequence analysis revealed that this single exception is the product of a gene conversion event involving an older preexisting L1 element. One hundred fifteen (45%) of the Ta L1 elements were polymorphic with respect to insertion presence or absence and will serve as identical-by-descent markers for the study of human evolution.  相似文献   

7.
Song M  Boissinot S 《Gene》2007,390(1-2):206-213
LINE-1 (L1) retrotransposons constitute the most successful family of autonomous retroelements in mammals and they represent at least 17% of the size of the human genome. L1 insertions have occasionally been recruited to perform a beneficial function but the vast majority of L1 inserts are either neutral or deleterious. The basis for the deleterious effect of L1 remains a matter of debate and three possible mechanisms have been suggested: the direct effect of L1 inserts on gene activity, genetic rearrangements caused by L1-mediated ectopic recombination, or the retrotransposition process per se. We performed a genome-wide analysis of the distribution of L1 retrotransposons relative to the local recombination rate and the age and length of the elements. The proportion of L1 elements that are longer than 1.2 Kb is higher in low-recombining regions of the genome than in regions with a high recombination rate, but the genomic distributions of full-length elements (i.e. elements capable of retrotransposition) and long truncated elements were indistinguishable. We also found that the intensity of selection against long elements is proportional to the replicative success of L1 families. This suggests that the deleterious effect of L1 elements results principally from their ability to mediate ectopic recombination.  相似文献   

8.
LINE-1 transposable elements (L1s) are ubiquitous in mammals and are thought to have remained active since before the mammalian radiation. Only one L1 extinction event, in South American rodents in the genus Oryzomys, has been convincingly demonstrated. Here we examine the phylogenetic limits and evolutionary tempo of that extinction event by characterizing L1s in related rodents. Fourteen genera from five tribes within the Sigmodontinae subfamily were examined. Only the Sigmodontini, the most basal tribe in this group, demonstrate recent L1 activity. The Oryzomyini, Akodontini, Phyllotini, and Thomasomyini contain only L1s that appear to have inserted long ago; their L1s lack open reading frames, have mutations at conserved amino acid residues, and show numerous private mutations. They also lack restriction site-defined L1 subfamilies specific to any species, genus or tribe examined, and fail to form monophyletic species, genus or tribal L1 clusters. We determine here that this L1 extinction event occurred roughly 8.8 million years ago, near the divergence of Sigmodon from the remaining Sigmodontinae species. These species appear to be ideal model organisms for studying the impact of L1 inactivity on mammalian genomes.  相似文献   

9.
Long interspersed element 1s (LINE-1s or L1s) are a family of non-long-terminal-repeat retrotransposons that predominate in the human genome. Active LINE-1 elements encode proteins required for their mobilization. L1-encoded proteins also act in trans to mobilize short interspersed elements (SINEs), such as Alu elements. L1 and Alu insertions have been implicated in many human diseases, and their retrotransposition provides an ongoing source of human genetic diversity. L1/Alu elements are expected to ensure their transmission to subsequent generations by retrotransposing in germ cells or during early embryonic development. Here, we determined that several subfamilies of Alu elements are expressed in undifferentiated human embryonic stem cells (hESCs) and that most expressed Alu elements are active elements. We also exploited expression from the L1 antisense promoter to map expressed elements in hESCs. Remarkably, we found that expressed Alu elements are enriched in the youngest subfamily, Y, and that expressed L1s are mostly located within genes, suggesting an epigenetic control of retrotransposon expression in hESCs. Together, these data suggest that distinct subsets of active L1/Alu elements are expressed in hESCs and that the degree of somatic mosaicism attributable to L1 insertions during early development may be higher than previously anticipated.  相似文献   

10.
Haas NB  Grabowski JM  North J  Moran JV  Kazazian HH  Burch JB 《Gene》2001,265(1-2):175-183
CR1 elements and CR1-related (CR1-like) elements are a novel family of non-LTR retrotransposons that are found in all vertebrates (reptilia, amphibia, fish, and mammals), whereas more distantly related elements are found in several invertebrate species. CR1 elements have several features that distinguish them from other non-LTR retrotransposons. Most notably, their 3' termini lack a polyadenylic acid (poly A) tail and instead contain 2-4 copies of a unique 8 bp repeat. CR1 elements are present at approximately 100,000 copies in the chicken genome. The vast majority of these elements are severely 5' truncated and mutated; however, six subfamilies (CR1-A through CR1-F) are resolved by sequence comparisons. One of these subfamilies (i.e. CR1-B) previously was analyzed in detail. In the present study, we identified several full-length elements from the CR1-F subfamily. Although regions within the open reading frames and 3' untranslated regions of CR1-F and CR1-B elements are well conserved, their respective 5' untranslated regions are unrelated. Thus, our results suggest that new CR1 subfamilies form when elements with intact open reading frames acquire new 5' UTRs, which could, in principle, function as promoters.  相似文献   

11.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   

12.
13.
14.
Chicken repeat 1 (CR1) is a taxonomically widespread non-LTR retrotransposon. Recent CR1 retrotranspositions in waterfowl suggested that, unlike chicken at least one subfamily remains active. Based on sequence information from 143 CR1 loci, six distinct groups of CR1 within the waterfowl coscoroba each with unique 3′ untranslated regions and distinct open reading frames are described. Through comparison to other previously described avian CR1 subfamilies, it is shown that five of the six coscoroba groups represent new subfamilies. At least one of these subfamilies is likely active and provides a target for future isolation of the first active member of this taxonomically widespread non-LTR family.  相似文献   

15.
Alu elements have inserted in the human genome throughout primate evolution. A small number of Alu insertions have occurred after the divergence of humans from nonhuman primates and therefore should not be present in nonhuman primate genomes. Most of these recently integrated Alu elements are contained with a series of discrete Alu subfamilies that are related to each other based upon diagnostic nucleotide substitutions. We have extracted members of the Alu Yd subfamily that are derivatives of the Alu Y subfamily that share a common 12-bp deletion that defines the Yd lineage from the draft sequence of the human genome. Analysis of the Yd Alu elements resulted in the recovery of two new Alu subfamilies, Yd3 and Yd6, which contain a total of 295 members (198 Yd3 and 97 Yd6). DNA sequence analysis of each of the Alu Yd subfamilies yielded age estimates of 8.02 and 1.20 million years old for the Alu Yd3 and Yd6 subfamilies, respectively. Two hundred Alu Yd3 and Yd6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and associated levels of human genomic diversity. The Alu Yd3 subfamily appears to have started amplifying relatively early in primate evolution and continued propagating albeit at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Only two of the elements are polymorphic in the human genome and absent from the genomes of nonhuman primates. By contrast all of the members of the Alu Yd6 subfamily are restricted to the human genome, with 12% of the elements representing insertion polymorphisms in human populations. A single Alu Yd6 locus contained an independent parallel forward insertion of a paralogous Alu Sq sequence in the owl monkey. These Alu subfamilies are a source of genomic fossil relics for the study of primate phylogenetics and human population genetics.  相似文献   

16.
A recently identified Alu element (Leeflang et al. J. Mol. Evol. 1993, 37:559–565), referred to as the putative founder of the HS (PV) subfamily, was found to be present at orthologous loci in the human, chimpanzee, gorilla, and gibbon lineages. The evolution of this Alu suggested that it is a source gene in the evolution of Alu family repeats for one of the most recent subfamilies, HS. We have determined that this putative founder of the HS subfamily was not present at the orthologous loci in older primates, including old world and new world monkeys. Thus, this particular Alu locus has only been responsible for the establishment of a very small subfamily of Alu sequences. We have further demonstrated that this putative founder Alu was not responsible for the de novo Alu insertion into the neurofibromatosis-1 gene of an individual causing neurofibromatosis. Our data demonstrate that although the putative founder of the HS subfamily found by Leeflang et al. (1993) probably gave rise to one of the most recent subfamilies of Alu sequences, it has not been very active in retroposition. Correspondence to: T.H. Shaikh  相似文献   

17.
Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.  相似文献   

18.
19.
Based on previous observations that newly inserted LINEs and SINEs have particularly long 3' A-tails, which shorten rapidly during evolutionary time, we have analyzed the rat and mouse genomes for evidence of recently inserted SINEs and LINEs. We find that the youngest predicted subfamilies of rodent identifier (ID) elements, a rodent-specific SINE derived from tRNA(Ala), are preferentially associated with A-tails over 50 bases in the rat genome, as predicted. Furthermore, these studies detected a subfamily of ID elements that has made over 15,000 copies that is younger than any previously reported ID subfamily. We use PCR analysis of genomic loci to demonstrate that all subfamily members tested inserted after the divergence of Rattus norvegicus from Rattus rattus. We also found evidence that the rodent B1 family of elements is much more active currently in mouse than in rat. These data provide useful estimates of recent activity from all of the mammalian retrotransposons, as well as allowing identification of the most recent insertions for use as population and speciation markers in those species. Both the current rat ID and mouse B1 elements that are active have small, specific interruptions in their 3' A-tail sequences. We suggest that these interruptions stabilize the length of the A-tails and contribute to the activity of these subfamilies. We present a model in which the dynamics of the 3' A-tail may be a central controlling factor in SINE activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号