首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

2.
The majority of eukaryotic proteins are phosphorylated in vivo, and phosphorylation may be the most common regulatory posttranslational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the high sensitivity and specificity of selected reaction monitoring (SRM) mass spectrometry, making it potentially useful for studying in vivo phosphorylation without the need to isolate target proteins. Our approach uses label-free quantification for simplicity and general applicability, although it is equally compatible with stable isotope quantification methods. We demonstrate that label-free SRM-based quantification is comparable to conventional assays for measuring the kinetics of phosphatase and kinase reactions in vitro. We also demonstrate the capability of this method to simultaneously measure relative rates of phosphorylation and dephosphorylation of substrate mixtures, including individual sites on intact protein substrates in the context of a whole cell extract. This strategy should be particularly useful for characterizing the physiological substrate specificity of kinases and phosphatases and can be applied to studies of other protein modifications as well.  相似文献   

3.
Protein phosphatase C was purified 140-fold from bovine brain with 8% yield using histone H1 phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase (cyclic AMP-kinase). Brain protein phosphatase C was considered to consist of 10 and 90%, respectively, of the catalytic subunits of protein phosphatases 1 and 2A on the basis of the effects of ATP and inhibitor-2. Protein phosphatase C dephosphorylated microtubule-associated protein 2 (MAP2), tau factor, and tubulin phosphorylated by a multifunctional Ca2+/calmodulin-dependent protein kinase (calmodulin-kinase) and the catalytic subunit of cyclic AMP-kinase. The properties of dephosphorylation of MAP2, tau factor, and tubulin were compared. The Km values were in the ranges of 1.6-2.7 microM for MAP2 and tau factor. The Km value for tubulin decreased from 25 to 10-12.5 microM in the presence of 1.0 mM Mn2+. No difference in kinetic properties of dephosphorylation was observed between the substrates phosphorylated by the two kinases. Protein phosphatase C did not dephosphorylate the native tubulin, but universally dephosphorylated tubulin phosphorylated by the two kinases. The holoenzyme of protein phosphatase 2A from porcine brain could also dephosphorylate MAP2, tau factor, and tubulin phosphorylated by the two kinases. The phosphorylation of MAP2 and tau factor by calmodulin-kinase separately induced the inhibition of microtubule assembly, and the dephosphorylation by protein phosphatase C removed its inhibitory effect. These data suggest that brain protein phosphatases 1 and 2A are involved in the switch-off mechanism of both Ca2+/calmodulin-dependent and cyclic AMP-dependent regulation of microtubule formation.  相似文献   

4.
The protein phosphatase activities involved in regulating the major pathways of intermediary metabolism can be explained by only four enzymes which can be conveniently divided into two classes, type-1 and type-2. Type-1 protein phosphatases dephosphorylate the beta-subunit of phosphorylase kinase and are potently inhibited by two thermostable proteins termed inhibitor-1 and inhibitor-2, whereas type-2 protein phosphatases preferentially dephosphorylate the alpha-subunit of phosphorylase kinase and are insensitive to inhibitor-1 and inhibitor-2. The substrate specificities of the four enzymes, namely protein phosphatase-1 (type-1) and protein phosphatases 2A, 2B and 2C (type-2) have been investigated. Eight different protein kinases were used to phosphorylate 13 different substrate proteins on a minimum of 20 different serine and threonine residues. These substrates include proteins involved in the regulation of glycogen metabolism, glycolysis, fatty acid synthesis, cholesterol synthesis, protein synthesis and muscle contraction. The studies demonstrate that protein phosphatase-1 and protein phosphatase 2A have very broad substrate specificities. The major differences, apart from the site specificity for phosphorylase kinase, are the much higher myosin light chain phosphatase and ATP-citrate lyase phosphatase activities of protein phosphatase-2A. Protein phosphatase-2C (an Mg2+-dependent enzyme) also has a broad specificity, but can be distinguished from protein phosphatase-2A by its extremely low phosphorylase phosphatase and histone H1 phosphatase activities, and its slow dephosphorylation of sites (3a + 3b + 3c) on glycogen synthase relative to site-2 of glycogen synthase. It has extremely high hydroxymethylglutaryl-CoA (HMG-CoA) reductase phosphatase and HMG-CoA reductase kinase phosphatase activity. Protein phosphatase-2B (a Ca2+-calmodulin-dependent enzyme) is the most specific phosphatase and only dephosphorylated three of the substrates (the alpha-subunit of phosphorylase kinase, inhibitor-1 and myosin light chains) at a significant rate. It is specifically inhibited by the phenathiazine drug, trifluoperazine. Examination of the amino acid sequences around each phosphorylation site does not support the idea that protein phosphatase specificity is determined by the primary structure in the immediate vicinity of the phosphorylation site.  相似文献   

5.
N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the co-translational and (or) post-translational transfer of myristate to the amino terminal glycine residue of a number of important proteins, especially the non-receptor tyrosine kinases whose activity is important for tumorigenesis. Human NMT was found to be phosphorylated by non-receptor tyrosine kinase family members of Lyn, Fyn, and Lck and dephosphorylated by the Ca2+/calmodulin-dependent protein phosphatase, calcineurin. In this review, we discuss the cross-talk that exists between NMT and their N-myristoylated protein substrates. The cross-talk among NMT, tyrosine kinases, and phosphatases may be determined by their subcellular localization and by the physiological state of the cell.  相似文献   

6.
The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified.  相似文献   

7.
Cytoplasmic non-polysomal mRNP from cryptobiotic gastrulae of the brine shrimp Artemia salina do not contain endogeneous protein phosphatase activity. However, both non-polysomal mRNP and purified mRNP proteins, phosphorylated by mRNP associated protein kinase, can be dephosphorylated by protein phosphatases purified from A. salina cytosol and rabbit skeletal muscle. The 38 kDa and 23.5 kDa poly(A) binding proteins (P38 and P23.5) and a 65 kDa protein are the major substrates of each protein phosphatase used. The reversible phosphorylation-dephosphorylation of mRNP may be involved in the regulation of mRNP metabolism, by altering the poly(A) binding capacities of the mRNP proteins.  相似文献   

8.
Serine/Threonine kinases participate in complex, interacting signaling pathways in eukaryotes, prokaryotes, and archae. While most organisms contain many different kinases, the extreme hyperthermophile, Aquifex aeolicus encodes a single hypothetical Ser/Thr kinase. A gene homologous to eukaryotic protein phosphatases overlaps the kinase gene by a single base pair. The putative kinase, AaSTPK and phosphatase, AaPPM, were cloned and expressed in E. coli, purified to homogeneity and found to be functional. AaSTPK is a 34-kDa monomer that can use MgATP, MnATP, or MnGTP as co-substrates, although MgATP appears to be the preferred substrate. AaSTPK was autophosphorylated on a threonine residue and was dephosphorylated by AaPPM. AaPPM phosphatase is homologous to the PPM sub-family of Ser/Thr phosphatases and was stimulated by MnCl2 and CoCl2 but not MgCl2. AaSTPK also phosphorylated one threonine residue on the carbamoyl phosphate synthetase, CPS.A subunit. Carbamoyl phosphate synthetase reconstituted with phosphorylated CPS.A had unaltered catalytic activity but allosteric inhibition by UMP and activation by the arginine intermediate, ornithine, were both appreciably attenuated. These changes in allosteric regulation would be expected to activate pyrimidine biosynthesis by releasing the constraints imposed on carbamoyl phosphate synthetase activity by UMP and uncoupling the regulation of pyrimidine and arginine biosynthesis. CPS.A was also dephosphorylated by AaPPM. Aquifex aeolicus occupies the lowest branch on the prokaryotic phylogenetic tree. The Thr/Ser kinase, its cognate phosphatase and a protein substrate may be elements of a simple signaling pathway, perhaps the most primitive example of this mode of regulation described thus far.  相似文献   

9.
Many protein kinases are activated through phosphorylation of an activation loop thereby turning on downstream signaling pathways. Activation of JAK2, a nonreceptor tyrosine kinase with an important role in growth factor and cytokine signaling, requires phosphorylation of the 1007 and 1008 tyrosyl residues. Dephosphorylation of these two sites by phosphatases presumably inactivates the enzyme, but the underlying mechanism is not known. In this study, we employed MALDI‐TOF/TOF and triple quadrupole mass spectrometers to analyze qualitatively and quantitatively the dephosphorylation process by using synthetic peptides derived from the tandem autophosphorylation sites (Y1007 and Y1008) of human JAK2. We found that tyrosine phosphatases catalyzed the dephosphorylation reaction sequentially, but different enzymes exhibited different selectivity. Protein tyrosine phosphatase 1B caused rapid dephosphorylation of Y1008 followed by Y1007, while SHP1 and SHP2 selectively dephosphorylated Y1008 only, and yet HePTP randomly removed a single phosphate from either Y1007 or Y1008, leaving behind mono‐phosphorylated peptides. The specificity of dephosphorylation was further confirmed by molecular modeling. The data reveal multiple modes of JAK2 regulation by tyrosine phosphatases, reflecting a complex, and intricate interplay between protein phosphorylation and dephosphorylation.  相似文献   

10.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

11.
12.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

13.
Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.  相似文献   

14.
Abstract: Multiple sites on the α1 and β subunits of purified skeletal muscle calcium channels are phosphorylated by cyclic AMP-dependent protein kinase, resulting in three different tryptic phosphopeptides derived from each subunit. Phosphoprotein phosphatases dephosphorylated these sites selectively. Phosphoprotein phosphatase 1 (PP1) and phosphoprotein phosphatase 2A (PP2A) dephosphorylated both α1 and β subunits at similar rates, whereas calcineurin dephosphorylated β subunits preferentially. PP1 dephosphorylated phosphopeptides 1 and 2 of the α1 subunit more rapidly than phosphopeptide 3. In contrast, PP2A dephosphorylated phosphopeptide 3 of the α1 subunit preferentially. All three phosphoprotein phosphatases preferentially dephosphorylated phosphopeptide 1 of the β subunit and dephosphorylated phosphopeptides 2 and 3 more slowly. Mn2+ increased the rate and extent of dephosphorylation of all sites by calcineurin so that >80% dephosphorylation of both α1 and β sub-units was obtained. The results demonstrate selective dephosphorylation of different phosphorylation sites on the α1 and β subunits of skeletal muscle calcium channels by the three principal serine/threonine phosphoprotein phosphatases.  相似文献   

15.
The substrate specificity of the different forms of the polycation-stimulated (PCS, type 2A) protein phosphatases and of the active catalytic subunit of the ATP, Mg-dependent (type 1) phosphatase (AMDC) was investigated, using synthetic peptides phosphorylated by either cyclic-AMP-dependent protein kinase or by casein kinase-2. The PCS phosphatases are very efficient toward the Thr(P) peptides RRAT(P)VA and RRREEET(P)EEE when compared with the Ser(P) analogues RRAS(P)VA and RRREEES(P)EEEAA. Despite their distinct sequence, both Thr(P) peptides are excellent substrates for the PCSM and PCSH1 phosphatases, being dephosphorylated faster than phosphorylase a. The slow dephosphorylation of RRAS(P)VA by the PCS phosphatases could be increased substantially by the insertion of N-terminal (Arg) basic residues. In contrast with the latter, the AMDC phosphatase shows very poor activity toward all the phosphopeptides tested, without preference for either Ser(P) or Thr(P) peptides. However, N-terminal basic residues also favor the dephosphorylation of otherwise almost inert substrates by the AMDC phosphatase. Hence, while the dephosphorylation of Thr(P) substrates by the PCS phosphatases is highly favored by the nature of the phosphorylated amino acid, phosphatase activity toward Ser(P)-containing peptides may require specific determinants in the primary structure of the phosphorylation site.  相似文献   

16.
Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages.  相似文献   

17.
In unfractioned reticulocyte lysate, interaction of eukaryotic initiation factor 2 (eIF-2) with other components regulates the accessibility of phosphatases and kinases to phosphorylation sites on its alpha and beta subunits. Upon addition of eIF-2 phosphorylated on both alpha and beta subunits (eIF-2(alpha 32P, beta 32P) to lysate, the alpha subunit is rapidly dephosphorylated, but the beta subunit is not. In contrast, both sites are rapidly dephosphorylated by the purified phosphatase. The basis of this altered specificity appears to be the association of eIF-2 with other translational components rather than an alteration of the phosphatase. Formation of an eIF-2(alpha 32P,beta 32P) Met-tRNAi X GTP ternary complex prevents dephosphorylation of the beta subunit, but has no effect on the rate of alpha dephosphorylation. eIF-2B, a 280,000-dalton polypeptide complex required for GTP:GDP exchange, also protects the beta subunit phosphorylation site from the purified phosphatase. However, the dephosphorylation of eIF-2(alpha 32P) is inhibited by 75% while complexed with eIF-2B. The altered phosphatase specificity upon association of eIF-2 with eIF-2B also affects the access of protein kinases to these phosphorylation sites. In the eIF-2B X eIF-2 complex, the alpha subunit is phosphorylated at 30% the rate of free eIF-2. Under identical conditions, phosphorylation of eIF-2 beta can not be detected. These results illustrate the importance of substrate conformation and/or functional association with other components in determining the overall phosphorylation state allowed by alterations of kinase and phosphatase activities.  相似文献   

18.
The introduction of peptides into living cells for the purpose of manipulating cellular biochemistry has become widespread throughout biology. However, little is known about the behavior of these short sequences of amino acids within cells, particularly those used as substrates or inhibitors for kinases and other enzymes. We utilized a quantitative, single-cell assay to demonstrate that an 11-amino acid peptide was efficiently phosphorylated by intracellular protein kinase B (PKB) in fibrosarcoma cell line HT1080 and in NIH-3T3 cells. The phosphorylated peptide was also readily dephosphorylated by intracellular phosphatases. Assays of the peptide's phosphorylation in single, living cells measured the balance of the activities of PKB and phosphatases in that cell. At a peptide concentration below the K(M) of PKB and the phosphatases, the ratio of phosphorylated to nonphosphorylated peptide at the steady state was independent of the peptide concentration. A single-cell assay utilizing this peptide revealed the existence of two subpopulations of cells whose unique activities had hitherto been obscured by population averaging. Additional studies of cells stimulated by PDGF demonstrated that a quantitative analysis of PKB activation in response to a physiological stimulus was possible. These studies demonstrated that short peptides can remain specific within the complex intracellular milieu and function as sensitive reporters of the activation state of native kinases within live cells.  相似文献   

19.
The synthetic phosphohexapeptides Arg-Arg-Ala-Thr(35P)-Val-Ala and Arg-Arg-Ala-Ser(32P)-Val-Ala, phosphorylated by the cAMP-dependent protein kinase and differing only in the nature of the phosphorylated residue, have been used as substrates of a partially purified rat liver protein phosphatase-T, distinct from the multifunctional protein phosphatase-1. While the phosphothreonyl hexapeptide is readily dephosphorylated (exhibiting a Km = 15 microM), the phosphoseryl one is almost unaffected. Such a behavior is not shared by protein phosphatase-1, calf intestine alkaline phosphatase, and potato acid phosphatase, all of which are more active on the phosphoseryl hexapeptide. The NH2-terminal basic residues critical for cAMP-dependent phosphorylation are not required in the dephosphorylation reaction, as both Arg can be removed without impairing the efficiency of protein phosphatase-T toward the phosphothreonyl peptide. On the other hand, the replacement of 2 Pro for the Ala and Val flanking Thr(32P), to give a new phosphohexapeptide reproducing the phosphorylated site of protein phosphatase inhibitor-1, prevents the protein phosphatase-T activity. Moreover, IgG heavy chain 32P labeled in tyrosine is not affected by protein phosphatase-T, while it is dephosphorylated by alkaline phosphatase. These results would indicate that protein phosphatase(s)-T represent a distinct class of protein phosphatases specifically involved in the dephosphorylation of phosphothreonyl residues fulfilling definite structural requirements.  相似文献   

20.
When the synaptosomal cytosol fraction from rat brain was chromatographed on a DEAE-cellulose column and assayed for protein phosphatases for τ factor and histone H1, two peaks of activities, termed peak 1 (major) and peak 2 (minor), were separated. Each peak was in a single form on Sephacryl S-300 column chromatography. Both peaks 1 and 2 dephosphorylated τ factor phosphorylated by Ca2+/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The Km values were in the range of 0.42–0.84 μM for τ factor. There were no differences in kinetic properties of dephosphorylation between the substrates phosphorylated by the two kinases. The phosphatase activities did not depend on Ca2+, Mn2+, and Mg2+. Immunoprecipitation and immunoblotting analysis using polyclonal antibodies to the catalytic subunit of brain protein phosphatase 2A revealed that both protein phosphatases are the holoenzymic forms of protein phosphatase 2A. Aluminum chloride inhibited the activities of both peaks 1 and 2 with IC50 values of 40–60 μM. These results suggest that dephosphorylation of r factor in presynaptic nerve terminals is controlled mainly by protein phosphatase 2A and that the neurotoxic effect of aluminum seems to be related mostly to inhibition of dephosphorylation of τ factor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号