首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of polyethylene glycols (PEGs) of up to 13,000 to 14,000 molecular weight has been shown to be performed by a river water bacterial isolate (strain JA1001) identified as Pseudomonas stutzeri. A pure culture of strain JA1001 grew on PEG 1000 or PEG 10000 at 0.2% (wt/vol) as a sole source of carbon and energy with a doubling time of 135 or 150 min, respectively. Cultures metabolized 2 g of polymer per liter in less than 24 h and 10 g/liter in less than 72 h. The limit of 13,500 molecular weight in the size of the PEG sustaining growth and the presence of a PEG-oxidative activity in the periplasmic space indicated that PEGs cross the outer membrane and are subsequently metabolized in the periplasm. PEG oxidation was found to be catalyzed by PEG dehydrogenase, an enzyme that has been shown to be a single polypeptide. Characterization of PEG dehydrogenase revealed glyoxylic acid as the product of the PEG-oxidative cleavage. Glyoxylate supported growth by entering the cell and introducing its carbons in the general metabolism via the dicarboxylic acid cycle, as indicated by the ability of strain JA1001 to grow on this compound and the presence of malate synthase, the first enzyme in the pathway, in extracts of PEG-grown cells.  相似文献   

2.
Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol [PEG 20000; HO-(CH2-CH2-O-)nH]. Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol [HO-(CH2-CH2-CH2-O-)nH] was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PG1 could not dehydrogenate long polymers of PEG (greater than or equal to 1,000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymers as substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.  相似文献   

3.
Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol [PEG 20000; HO-(CH2-CH2-O-)nH]. Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol [HO-(CH2-CH2-CH2-O-)nH] was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PG1 could not dehydrogenate long polymers of PEG (greater than or equal to 1,000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymers as substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.  相似文献   

4.
2, 6-Dichlorophenolindophenol (DCIP)-dependent polyethylene glycol (PEG) dehydrogenase activity was found in the particulate fractions of cell-free extracts prepared from PEG-utilizing bacteria (Pseudomonas and Flavobacterium species). This result suggested that PEG dehydrogenase is linked to the respiratory chain of each bacterium and that the enzyme plays a major role in the aerobic metabolism of PEG. Enzyme activities were strongly inhibited by 1, 4-benzoquinone. No metal ion was indispensable for the enzyme activities. Enzyme activities of PEG-utilizing bacteria were induced by PEG except for the activity of PEG 4000-utilizing Flavobacterium sp. no. 203 which had a constitutive enzyme. Although PEG-utilizing bacteria had different growth substrate specificities toward PEGs 200–20,000, their PEG dehydrogenases oxidized the same molecular wt. range of PEGs (dimer-20,000). Cell-free extracts of PEG 400-, 1000- or 4000-utilizing bacteria oxidized PEG 6000 and 20,000 though these bigger PEGs could not be utilized as the sole carbon and energy sources by the bacteria. Methanol, ethylene glycol and glycerol were not or only barely dehydrogenated by all the enzyme preparations.  相似文献   

5.
Pseudonocardia sp. strain K1 is the only Gram-positive bacterium among the bacteria aerobically metabolizing polyethylene glycol (PEG). Generally, PEG is metabolized by an oxidative pathway in which a terminal alcohol group of PEG is oxidized to aldehyde and to carboxylic acid and then an ether bond is oxidatively cleaved. As the cell-free extract of Pseudonocardia sp. strain K1 has PEG dehydrogenase, PEG aldehyde dehydrogenase and diglycolic acid (DGA) dehydrogenase (DGADH) activities, all of which are constitutively formed, the strain has a metabolic pathway similar to that so far known. We purified an ether bond-splitting enzyme as DGADH. The molecular mass of the enzyme was estimated to be 55 kDa; and it consisted of two identical subunits. The enzyme oxidatively cleaved both an ether bond of PEG 3000 dicarboxylic acid and DGA. The N-terminal amino acid sequence of the purified enzyme had high homology with various superoxide dismutases and the enzyme had also superoxide dismutase activity. The atomic absorption spectrum showed that approximately one atom of Fe was included in each subunit of the enzyme. DGADH activity increased in the cells grown in a PEG medium supplemented with FeCl3. Thus, we concluded that the enzyme purified from Pseudonocardia sp. strain K1 is a new ether bond-splitting enzyme.  相似文献   

6.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

7.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

8.
This paper summarizes studies on microbial degradation of polyethers. Polyethers are aerobically metabolized through common mechanisms (oxidation of terminal alcohol groups followed by terminal ether cleavage), well-characterized examples being found with polyethylene glycol (PEG). First the polymer is oxidized to carboxylated PEG by alcohol and aldehyde dehydrogenases and then the terminal ether bond is cleaved to yield the depolymerized PEG by one glycol unit. Most probably PEG is anaerobically metabolized through one step which is catalyzed by PEG acetaldehyde lyase, analogous to diol dehydratase. Whether aerobically or anaerobically, the free OH group is necessary for metabolization of PEG. PEG with a molecular weight of up to 20,000 was metabolized either in the periplasmic space (Pseudomonas stutzeri and sphingomonads) or in the cytoplasm (anaerobic bacteria), which suggests the transport of large PEG through the outer and inner membranes of Gram-negative bacterial cells. Membrane-bound PEG dehydrogenase (PEG-DH) with high activity towards PEG 6,000 and 20,000 was purified from PEG-utilizing sphingomonads. Sequencing of PEG-DH revealed that the enzyme belongs to the group of GMC flavoproteins, FAD being the cofactor for the enzyme. On the other hand, alcohol dehydrogenases purified from other bacteria that cannot grow on PEG oxidized PEG. Cytoplasmic NAD-dependent alcohol dehydrogenases with high specificity towards ether-alcohol compound, either crude or purified, showed appreciable activity towards PEG 400 or 600. Liver alcohol dehydrogenase (equine) also oxidized PEG homologs, which might cause fatal toxic syndrome in vivo by carboxylating PEG together with aldehyde dehydrogenase when PEG was absorbed. An ether bond-cleaving enzyme was detected in PEG-utilizing bacteria and purified as diglycolic acid (DGA) dehydrogenase from a PEG-utilizing consortium. The enzyme oxidized glycolic acid, glyoxylic acid, as well as PEG-carboxylic acid and DGA. Similarly, dehydrogenation on polypropylene glycol (PPG) and polytetramethylene glycol (PTMG) was suggested with cell-free extracts of PPG and PTMG-utilizing bacteria, respectively. PPG commercially available is atactic and includes many structural (primary and secondary alcohol groups) and optical (derived from pendant methyl groups on the carbon backbone) isomers. Whether PPG dehydrogenase (PPG-DH) has wide stereo- and enantioselective substrate specificity towards PPG isomers or not must await further purification. Preliminary research on PPG-DH revealed that the enzyme was inducibly formed by PPG in the periplasmic, membrane and cytoplasm fractions of a PPG-utilizing bacterium Stenotrophomonas maltophilia. This finding indicated the intracellular metabolism of PPG is the same as that of PEG. Besides metabolization of polyethers, a biological Fenton mechanism was proposed for degradation of PEG, which was caused by extracellular oxidants produced by a brown-rot fungus in the presence of a reductant and Fe3+, although the metabolism of fragmented PEG has not yet been well elucidated.  相似文献   

9.
The preferential interactions of bovine serum albumin, lysozyme, chymotrypsinogen, ribonuclease A, and beta-lactoglobulin with polyethylene glycols (PEGs) of molecular weight 200-6,000 have been measured by dialysis equilibrium coupled with high precision densimetry. All the proteins were found to be preferentially hydrated in all the PEGs, and the magnitude of the preferential hydration increased with increasing PEG size for each protein. The change in the chemical potentials of the proteins with the addition of the PEGs had highly positive values, indicating a strong thermodynamic destabilization of the system by the PEGs. A viscosity study of the PEGs showed them to be randomly coiled polymers, as their radii of gyration were related to the molecular weight by Rg = aM0.55. The thickness of the effective shell impenetrable to PEG around protein molecules, calculated from the preferential hydration, was found to vary with PEG molecular weight in similar fashion as the PEG radius of gyration, supporting the proposal (Arakawa, T. & Timasheff, S.N., 1985a, Biochemistry 24, 6756-6762) that the preferential exclusion of PEGs from proteins is due principally to the steric exclusion of PEG from the protein domain, although favorable interactions with protein surface residues, in particular nonpolar ones, may compete with the exclusion. These thermodynamically unfavorable preferential exclusion interactions lead to the action of PEGs as precipitants, although they may destabilize protein structure at higher temperatures.  相似文献   

10.
The effects of polyethylene glycol (PEG) of different molecular weights (400, 2000, 6000, 12,000, 20,000, and 35,000) on the conformational stability and catalytic activity of alpha-chymotrypsin in 60% ethanol were studied. The inactivation caused by the organic solvent was not influenced by PEG 400. However, the PEGs with higher molecular weights up to 35,000 increased the stability of the enzyme, but this alpha-chymotrypsin stabilizing effect was molecular weight-independent. With increase of the molecular weight of PEG, a more stable tertiary structure of the enzyme was observed.  相似文献   

11.
α-Chymotrypsin was chemically modified with methoxypoly(ethylene glycol) (PEG) of different molecular weights (700, 2,000, and 5,000 Da) and the amount of polymer attached to the enzyme was varied systematically from 1 to 9 PEG molecules per enzyme molecule. Upon PEG conjugation, enzyme catalytic turnover (k cat) decreased by 50% and substrate affinity was lowered as evidenced by an increase in the K M from 0.05 to 0.19 mM. These effects were dependent on the amount of PEG bound to the enzyme but were independent of the PEG size. In contrast, stabilization toward thermal inactivation depended on the PEG molecular weight with conjugates with the larger PEGs being more stable.  相似文献   

12.
Three bacterial strains have been isolated that differ in their ability to degrade polyethylene glycols (PEGs). Strains R and O showed a marked preference for growth on the low and high molecular weight PEGs, respectively, while strain Z utilized mono-ethylene glycol only. The partial degradation of PEG 200 by strains R and O was studied in some detail and the results suggested that those components of the mixture that were not utilized were converted into acidic derivatives which accumulated in the medium.  相似文献   

13.
PEG和DBBF修饰猪血红蛋白及其携氧性质   总被引:6,自引:2,他引:6  
采用聚乙二醇 (PEG)修饰蛋白质可以增大蛋白质的分子量 ,改善其生物相容性和在生物体内的停留时间。而小分子交联修饰则可以稳定血红蛋白的高级结构 ,改善其对组织的递氧能力。比较了 4种方法活化的PEG衍生物对猪血红蛋白的修饰效率、修饰产物的携氧功能和稳定性等。PEG的分子量、轭合PEG的数量及变构效应物的存在与否都会影响修饰产物的性质 ;考察了双 3,5二溴水杨酸延胡索酸酯 (DBBF)修饰猪血红蛋白的反应条件以及修饰产物的物理特性和携氧能力 ,并进一步采用PEG和DBBF联合修饰猪血红蛋白。结果证明 ,联合修饰产物具有稳定的四聚体结构 ,分子量达 10 70 0 0 ,半饱和氧分压P50 在 3.33kPa左右 ,接近于生理条件下人体红细胞的P50 值。  相似文献   

14.
Mast cells were isolated from the peritoneal cavity of rat and purified by centrifugation in a gradient of Percoll. The spontaneous and polymyxin B-induced release of histamine was studied after preincubation of the cells with polyethyleneglycols (PEGs) of different molecular weight (200-20,000 dalton) and with fatty acid derivatives of PEG 6000. It was found that very low concentrations (less than 0.1%) of PEG 6000 reduced the spontaneous and polymyxin B-induced release of histamine to a greater extent than the same concentration of bovine serum albumin. The inhibition increased with the size of the PEGs, but was little affected by the presence of fatty acid ligand bound to PEG.  相似文献   

15.
Branched polyethylene glycol for protein precipitation   总被引:1,自引:0,他引:1  
The use of linear PEGs for protein precipitation raises the issues of high viscosity and limited selectivity. This paper explores PEG branching as a way to alleviate the first problem, by using 3-arm star as the model branched structure. 3-arm star PEGs of 4,000 to 9,000 Da were synthesized and characterized. The effects of PEG branching were then elucidated by comparing the branched PEG precipitants to linear versions of equivalent molecular weights, in terms of IgG recovery from CHO cell culture supernatant, precipitation selectivity, solubility of different purified proteins, and precipitation kinetics. Two distinct effects were observed: PEG branching reduced dynamic viscosity; secondly, the branched PEGs precipitated less proteins and did so more slowly. Precipitation selectivity was largely unaffected. When the branched PEGs were used at concentrations higher than their linear counterparts to give similar precipitation yields, the dynamic viscosity of the branched PEGs were noticeably lower. Interestingly, the precipitation outcome was found to be a strong function of PEG hydrodynamic radius, regardless of PEG shape and molecular weight. These observations are consistent with steric mechanisms such as volume exclusion and attractive depletion.  相似文献   

16.
17.
Microbial Degradation of Polyethylene Glycols   总被引:15,自引:8,他引:7       下载免费PDF全文
Mono-, di-, tri-, and tetraethylene glycols and polyethylene glycols (PEG) with molecular weight up to 20,000 were degraded by soil microorganisms. A strain of Pseudomonas aeruginosa able to use a PEG of average molecular weight 20,000 was isolated from soil. Washed cells oxidized mono and tetraethylene glycols, but O2 consumption was not detectable when such cells were incubated for short periods with PEG 20,000. However, the bacteria excreted an enzyme which converted low- and high-molecular-weight PEG to a product utilized by washed P. aeruginosa cells. Gas chromatography of the supernatant of a culture grown on PEG 20,000 revealed the presence of a compound co-chromatographing with diethylene glycol. A metabolite formed from PEG 20,000 by the extracellular enzyme preparation was identified as ethylene glycol by combined gas chromatography-mass spectrometry.  相似文献   

18.
Aggregation of human RBC in binary dextran-PEG polymer mixtures   总被引:1,自引:0,他引:1  
The present study was prompted by prior reports suggesting that small polymers can affect RBC aggregation induced by large macromolecules. Human RBC were washed and re-suspended in isotonic buffer solutions containing 72.5 kDa dextran (DEX 70, 2 g/dl) or 35.0 kDa poly(ethylene glycol) (PEG 35, 0.35 g/dl), then tested for aggregation in these solutions with and without various concentrations of smaller dextrans (10.5 and 18.1 kDa) or PEGs (3.35, 7.5 and 10.0 kDa). RBC aggregation was measured at stasis and at low shear using a photometric cone-plate system (Myrenne Aggregometer) and RBC electrophoretic mobility (EPM) in the various polymer solutions via an automated system (E4, HaSoTec GmbH). Our results indicate: (1) a heterogeneous effect with greater reduction of aggregation for small PEGs added to DEX 70 or for small dextrans added to PEG 35 than for small polymers of the same species; (2) for cells in DEX 70, aggregation decreased with increasing molecular mass and concentration of the small dextrans or PEGs; (3) for cells in PEG 35, small dextrans decreased aggregation with increasing molecular mass and concentration, whereas small PEGs had minimal effects with a minor influence of concentration and an inverse association between molecular mass and inhibition of aggregation. RBC EPM results indicated the expected polymer depletion for cells in DEX 70 or PEG 35, and that small PEGs yielded greater EPM values than small dextrans for cells in PEG 35 whereas the opposite was true for cells in DEX 70. Interpretation of our results in terms of the depletion model for RBC aggregations appears appropriate, and our findings are consistent with the assumption that inhibition of aggregation occurs because of an increase of small molecules in the depletion region. Our results thus suggest the merit of further studies of red blood cell aggregation in binary polymer systems.  相似文献   

19.
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors.  相似文献   

20.
Polyethylene glycol (PEG) 4000-utilizing bacterium no. 203 was identified as a Flavobacterium species. 2, 6-Dichlorophenol-indophenol (DCIP)-dependent PEG dehydrogenase was constitutively formed in nutrient broth, glucose and PEG media. However, the enzyme formation was repressed in the presence of an excess amount (over 0.25%) of PEG 400 or 1000. PEG dehydrogenase was purified approximately 34 fold by precipitation with ammonium sulfate, solubilization with benzalkonium chloride, chromatography with DEAE-Toyopearl 650 M and hydroxylapatite and gel filtration on Toyopearl HW-55. The molecular weight of the purified PEG dehydrogenase was calculated to be approximately 2.20 × 105, a value which seemed to consist of four subunits with the same molecular weight of 5.70 × 104. The enzyme was stable below 40°C and in the pH range of 7.0 and 8.0. The optimum pH and temperature of the activity were around 8.0 and 40°C, respectively. The enzyme reduced DCIP and coenzyme Q1 and Q2. PEG dehydrogenase showed activity toward various PEG molecules (dimer-PEG 20,000). The apparent Km values for PEG 400, 1000, 4000 and 6000 were about 1.0, 1.7, 2.8 and 5.9 mM, respectively. The enzyme oxidized primary aliphatic alcohols of C3–C12, the corresponding aldehydes of C3–C7, aromatic alcohols and aldehydes, diols, etc. The enzyme was inactive on ethylene glycol, glycerol, secondary alcohols and sugar alcohols. The enzyme activity was strongly inhibited by sulfhydryl agents or heavy metals and 1, 4-benzoquinone. The purified enzyme showed absorption apectrum similar to that of PEG 6000 dehydrogenase which has already been reported to be a quinoprotein. The prosthetic group of the enzyme was extracted with methanol and identified as PQQ from its prosthetic group capability for glucose dehydrogenase and the fluorescence spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号