首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp isolated from the Bay of Bengal (Madras coast) contained a single large plasmid (pMR1) of 146 kb. Plasmid curing was not successful with mitomycin C, sodium dodecyl sulfate, acridine orange, nalidixic acid or heat. Transfer of mercury resistance from marinePseudomonas toEscherichia coli occurred during mixed culture incubation in liquid broth at 10–4 to 10–5 ml–1. However, transconjugants lacked the plasmid pMR1 and lost their ability to resist mercury. Transformation of pMR1 intoE. coli competent cells was successful; however, the efficiency of transformation (1.49×102 Hgr transformants g–1 pMR1 DNA) was low.E. coli transformants containing the plasmid pMR1 conferred inducible resistance to mercury, arsenic and cadmium compounds similar to the parental strain, but with increased expression. The mercury resistant transformants exhibited mercury volatilization activity. A correlation existed between metal and antibiotic resistance in the plasmid pMR1.  相似文献   

2.
Summary AnEscherichia coli K-12 strain harbouring either the plasmid pBR322, or the recombinant plasmid pKTH1220, a 14 kb derivative of pBR322, or no plasmid was grown in a chemostat. The cultivations were continued for 300–400 bacterial generations.E. coli hosts harbouring pBR322 or no plasmid grew in a similar way, but the growth of the host containing the big recombinant plasmid was slower. The plasmid copy numbers increased up to 2–3 fold as the dilution rate was increased from 0 to ca. 1 h–1. After this point the increase in dilution rate seemed to induce a rapid decrease in the plasmid copy numbers. High copy numbers could be maintained using dilution rates resulting in good productivity of the cell mass.  相似文献   

3.
Summary When the nodulating Rhizobium trifolii strain 24Vior containing plasmid RP4 was conjugated with the non-nodulating R. trifolii mutant strain 24StrrNod-35, plasmid RP4 was transferred at a frequency 10-3–10-4. Two out of nearly three thousand tested transconjugants which contained plasmid RP4 had acquired the ability to form nodules on clovers. Molecular studies of the DNA of both these nodulating transconjugants showed the presence of plasmid RP4 and another plasmid which was not found in the original recipient strain. The size of this second plasmid corresponded to that of the plasmid pWZ2, the elimination of which was correlated with irreversible loss of the nodulating ability of R. trifolii strain 24 (Zurkowski and Lorkiewicz 1979). Plasmid RP4 was eliminated from cells by ethidium bromide, without the loss of nodulating properties. The nodulation capacity, however, was eliminated from transconjugants after incubation of bacteria at elevated temperature. Non-nodulating clones obtained after such incubation did not contain the plasmid pWZ2. The results indicate that the plasmid pWZ2 is a necessary element for induction of nodules by R. trifolii, and that it can be mobilized by plasmid RP4.  相似文献   

4.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

5.
Two biofilters fed toluene-polluted air were inoculated with new fungal isolates of either Exophiala oligosperma or Paecilomyces variotii, while a third bioreactor was inoculated with a defined consortium composed of both fungi and a co-culture of a Pseudomonas strain and a Bacillus strain. Elimination capacities of 77 g m–3 h–1 and 55 g m–3 h–1 were reached in the fungal biofilters (with removal efficiencies exceeding 99%) in the case of, respectively, E. oligosperma and Paecilomyces variotii when feeding air with a relative humidity (RH) of 85%. The inoculated fungal strains remained the single dominant populations throughout the experiment. Conversely, in the biofilter inoculated with the bacterial–fungal consortium, the bacteria were gradually overgrown by the fungi, reaching a maximum elimination capacity around 77 g m–3 h–1. Determination of carbon dioxide concentrations both in batch assays and in biofiltration studies suggested the near complete mineralization of toluene. The non-linear toluene removal along the height of the biofilters resulted in local elimination capacities of up to 170 g m–3 h–1 and 94 g m–3 h–1 in the reactors inoculated, respectively, with E. oligosperma and P. variotii. Further studies with the most efficient strain, E. oligosperma, showed that the performance was highly dependent on the RH of the air and the pH of the nutrient solution. At a constant 85% RH, the maximum elimination capacity either dropped to 48.7 g m–3 h–1 or increased to 95.6 g m–3 h–1, respectively, when modifying the pH of the nutrient solution from 5.9 to either 4.5 or 7.5. The optimal conditions were 100% RH and pH 7.5, which allowed a maximum elimination capacity of 164.4 g m–3 h–1 under steady-state conditions, with near-complete toluene degradation.  相似文献   

6.
Reed B. Wickner 《Genetics》1976,82(2):273-285
Mutants of the killer plasmid of Saccharomyecs cerevisiae have been isolated that depend upon chromosomal diploidy for the expression of plasmid functions and for replication or maintenance of the plasmid itself. These mutants are not defective in any chromosomal gene needed for expression or replication of the killer plasmid.—Haploids carrying these mutant plasmids (called d for diploid-dependent) are either unable to kill or unable to resist being killed or both and show frequent loss of the plasmid. The wild-type phenotype (K+R+) is restored by mating the d plasmid-carrying strain with either (a) a wild-type sensitive strain which apparently has no killer plasmid; (b) a strain which has been cured of the killer plasmid by growth at elevated temperature; (c) a strain which has been cured of the plasmid by growth in the presence of cycloheximide; (d) a strain which has lost the plasmid because it carries a mutation in a chromosomal mak gene; or (e) a strain of the opposite mating type which carries the same d plasmid and has the same defective phenotype, indicating that the restoration of the normal phenotype is not due to recombination between plasmid genomes or complementation of plasmid or chromosomal genes.—Sporulation of the phenotypically K+R+ diploids formed in matings between d and wild-type nonkiller strains yields tetrads, all four of whose haploid spores are defective for killing or resistance or maintenance of the plasmid or a combination of these. Every defective phenotype may be found among the segregants of a single diploid clone carrying a d plasmid. These defective segregants resume the normal killer phenotype in the diploids formed when a second round of mating is performed, and the segregants from a second round of meiosis and sporulation are again defective.  相似文献   

7.
8.
Rhizobium fredii USDA 206 carries four plasmids which total more than 1200 MDa of DNA. A series of plasmid-cured mutants of strain USDA 206 were derived and compared to determine possible functions of the plasmids, as well as the effect of the plasmids on growth and competitiveness of their host strains. No functions of plasmid pRj206a or pRj206c were found. Plasmid pRj206b was found to have a higher copy number in the non-mucoid (Muc) derivative strain 206CANS. Transfer of pRj206b conferred on two recipient strains a Muc phenotype indicating control of exopolysaccharide synthesis by this plasmid. The same plasmid appeared to encode repression of melanin synthesis. Strain 206CANS was also shown to have a shorter generation time than USDA 206 and to out-compete USDA 206 in batch and chemostat culture. Competition for nodulation indicated little difference between USDA 206 and 206CANS, while USDA 206 appeared to be more competitive than two of the other cured derivatives.Paper no. 11886 of the Journal Series of North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. Cooperative investigations of the U.S. Department of Agricultural, Agricultural Research Service and the North Carolina Agricultural Research Service Raleigh, NC 27695-7601, USA  相似文献   

9.
Strains of Escherichia coli recently isolated from human feces were examined for the frequency with which they accept an R factor (R1) from a derepressed fi+ strain of E. coli K-12 and transfer it to fecal and laboratory strains. Colicins produced by some of the isolates rapidly killed the other half of the mating pair; therefore, conjugation was conducted by a membrane filtration procedure whereby this effect was minimized. The majority of fecal E. coli isolates accepted the R factor at lower frequencies than K-12 F, varying from 10−2 per donor cell to undetectable levels. The frequencies with which certain fecal recipients received the R-plasmid were increased when its R+ transconjugant was either cured of the R1-plasmid and remated with the fi+ strain or backcrossed into the parental strain. The former suggests the loss of an incompatibility plasmid, and the latter suggests the modification of the R1-plasmid deoxyribonucleic acid (DNA). In general, the fecal R+E. coli transconjugants were less effective donors for K-12 F and heterologous fecal strains than was the fi+ K-12 strain, whereas the single strain of Citrobacter freundii examined was generally more competent. Passage of the R1-plasmid to strains of salmonellae reached mating frequencies of 10−1 per donor cell when the recipient was a Salmonella typhi previously cured of its resident R-plasmid. However, two recently isolated strains of Salmonella accepted the R1-plasmid from E. coli K-12 R+ or the R+E. coli transconjugants at frequencies of 5 × 10−7 or less.  相似文献   

10.
Absract The plasmid stability of three wild type Lactococcus lactis strains and their mutants was investigated at different incubation time and temperatures in two different media [M17 broth and reconstituted skim milk (RSM)]. The results showed that both incubation times and temperature are effective on plasmid loss. The plasmid profiles of wild type strains exhibited 8 to 9 distinct plasmid species with molecular weights from 2.1 to 24.0 kb. Lactose fermentation ability was found to be encoded by 22.2 (strain U70), 23.6 (strain U29) and 24.0 (strain U52) kb plasmids in the wild type strains, respectively. The stabilities of the plasmids were explained by applying a second-order polynomial modeling system. Reasonable fittings were obtained for the model and the adjusted regression coefficients (R 2 adj) were between 0.76 and 0.99 for the overall data. Overall, it was found that incubation time had the most profound effect on plasmid stability, with plasmid loss occurring after 72 h, while temperatures in the range of 15–40°C also induced plasmid instability.  相似文献   

11.
At temperatures lower than 37°C, the ethanol inhibition constant (Ki) for growth or fermentation inrho + cells of theSaccharomyces cerevisiae strain S288C was always higher (1.1M) than inrho mutants (0.7M). At 37°C these differences disappeared, and both strains were equally inhibited by ethanol (Ki=0.7m). Mitochondrial activity can be inhibited by high ethanol concentration and temperature. In fact, the stronger inhibition by ethanol of therho + strain at 37°C was due to the fact that, under these conditions, this strain loses the advantage conferred by mitochondrial activity since the induction ofrho cells in the population is very high. This does not result in an increase in the frequency ofrho mutants because of the poor viability of these mutants in conditions of high temperature and ethanol. In consequence, S288C strain becomes as strongly inhibited by ethanol as therho mutant strains. Differences in viability were not related to the fatty acids and ergosterol composition of the strain. In the presence of ethanol, bothrho + andrho strains modified their lipids in the same way, but these changes did not improve their ethanol tolerance. They were not due to differences in adaptation to ethanol either, since after successive transfers in ethanol, growth () and fermentation () rates in therho mutants were increasingly inhibited with time, whereas in the S288C strain inhibition of and by ethanol remained unaltered. Rather,rho mutants are less viable thanrho + cells because of the inability of the former to respire. At 37°C the Ki increased to 0.9M ethanol either when mitochondrial from highly ethanol-tolerant wine yeasts were transferred torho mutants of the strain S288C or when the mitochondria of strain S288C were preadapted by growing the strain in glycerol instead of glucose before it was cultivated in ethanol.  相似文献   

12.
The prochiral sila-ketone acetyldimethyl-(phenyl)silane (1) was reduced enantioselectively into (R)-(1-hydroxyethyl)dimethyl(phenyl)silane [(R)-2] using resting cells of the commercially available yeast Saccharomyces cerevisiae (DHW S-3) as the biocatalyst. The bioconversion was performed on a 2.0-g scale in a 5-1 bioreactor. Starting with a substrate (1) concentration of 0.4 g·1–1, the highest production rate measured for this bioconversion was about 45–55 mol (R)-2·1–1·min–1. After an incubation time of 1 h, all substrate in the medium had been converted, either biocatalytically reduced to (R)-2 or (probably chemically) converted into dimethyl(phenyl)silanol (Me2PhSiOH). After extraction of the cell-free medium with ethyl acetate/dichloromethane and subsequent purification of the extract by Kugelrohr distillation and chromatography on silica gel (medium-pressure liquid chromatography), 800 mg (yield 40%) of the bioconversion product (R)-2 was isolated. As shown by HPLC studies (cellulose triacetate as the chiral stationary phase) and 1H-nuclear magnetic resonance experiments (after derivatization of the bioconversion product with a chiral auxiliary agent), compound (R)-2 was almost enantiomerically pure (> 99% enantiomeric excess).This article is dedicated to Prof. Dr. Fritz Wagner on the occasion of his 65th birthday  相似文献   

13.
The glucose kinase gene (glkA-ORF3) of Streptomyces coelicolor A3(2) plays an essential role in glucose utilisation and in glucose repression of a variety of genes involved in the utilisation of alternative carbon sources. These genes include dagA, which encodes an extracellular agarase that permits agar utilisation. Suppressor mutants of glkA-ORF3 deletion strains capable of utilising glucose (Glc+) arise at a frequency of about 10–5 on prolonged incubation. The Glc+ phenotype of the mutants is reversible (at a frequency of about 10–3) and reflects either the activation of a normally silent glucose kinase gene or the modification of an existing sugar kinase. Although the level of glucose kinase activity in the Glc+ supressor mutants is similar to that in the glkA + parental strain, glucose repression of dagA remains defective. Expression of the glucose kinase gene of Zymomonas mobilis in glkA-ORF3 mutants restored glucose utilisation, but not glucose repression of dagA. Over-expression of glkA-ORF3 on a high-copy-number plasmid failed to restore glucose repression of dagA in glkA-ORF3 mutants and led to loss of glucose repression of dagA in a glkA + strain. These results suggest that glucose phosphorylation itself is not sufficient for glucose repression and that glkA-ORF3 plays a specific regulatory role in triggering glucose repression in S. coelicolor A3(2).  相似文献   

14.
Summary Mutant strains were derived from Clostridium thermoaceticum ATCC 39 289 by treatment with chemical mutagenic agents and selective enrichment procedures. Some mutant strains exhibited growth when cultured in media containing 20 mabetm (1.75 g l–1) pyruvate of high-magnesium lime (dolime) above pH 6.0. One strain (G-20) grew and produced acetate when 80 mabetm (7 gl–1) pyruvate or 50 mabetm (2.3 g l–1) formate at pH 5.6 was the sole energy source. In a fed-batch process controlled at pH 6.2, this mutant produced 52.5 g l–1 acetate (equivalent to 72.5 g l–1 Na acetate) and 67 g l–1 calcium-magnesium acetate (CMA) in 140 h when dolime was the neutralizing agent, with 93% substrate utilization. This mutant strain holds promise for CMA production due to its better tolerance of dolime and its ability to synthesize high levels of acetic acid. Offprint requests to: S. R. Parekh  相似文献   

15.
Bacterial Degradation of EDTA   总被引:1,自引:0,他引:1  
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal–EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal–EDTA complexes (Me–EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 1016 (log K < 16), such as Mg–EDTA, Ca–EDTA, and Mn–EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5–10 h of incubation. Me–EDTA complexes with log K above 16 (Zn–EDTA, Co–EDTA, Pb–EDTA, and Cu–EDTA) were not completely degraded during a 24-h incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd–EDTA or Fe(III)–EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   

16.
A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg–1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg–1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg–1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 mol g–1 (cell dry weight) min–1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.  相似文献   

17.
Summary pTU 100 is a hybrid plasmid constructed by cloning a 7.5 Kb EcoRI fragment (carrying the wildtype ompA gene) onto pSC 101 (Henning et al., 1979). This plasmid confers sensitivity to phages Tull* and K3h1 when present in an ompA host strain, due to the expression of the phage receptor protein II* from the plasmid ompA + gene. Plasmid mutants have been isolated that have become resistant to one or both of these phages. Restriction endonuclease analysis and DNA-sequencing studies in these plasmids demonstrate that a BamHI site and two PvuII sites are located within the ompA gene. BamHI cuts the gene at a site corresponding to residue 227 within a total of 325 amino acid residues.Neither the wildtype ompA gene nor the BamHI fragment encoding the NH2-terminal part of the protein (residues 1–227) could be transferred to a high copy number plasmid, presumably due to lethal overproduction of the protein or its NH2-terminal fragment. However, the NH2-terminal fragment derived from one of the ompA mutants of pTU100 could be transferred to the high copy number plasmid pBR322, and was expressed in the presence of the amber suppressors supD or supF. Under these conditions two new envelope proteins with apparent molecular weights of 30,000 and 24,000 were synthesized, and the cells became sensitive to phage TuII*, indicating the presence of phage receptor activity in the outer membrane. The major, 24,000 dalton protein has the molecular weight expected of a protein comprising residues 1–227 of protein II*. DNA-sequencing studies demonstrated that no termination codons are present in the DNA region immediately downstream from the BamHI site at residue 227 in this hybrid plasmid, and it is therefore likely that the 24,000-dalton protein arises from the posttranslational proteolytic cleavage of a larger polypeptide. The 30,000-dalton protein is a likely candidate for such a larger polypeptide. These results also demonstrate that the 98 CO2H-terminal residues of wildtype protein II* (resisdues 228–325) are not required either for the activity of the protein as a phage receptor or for its incorporation into the outer membrane.  相似文献   

18.
Water column respiration (WCR) was measured in dark BOD bottles for 2, 4 and 8 h intervals during 22 h periods in two 1000 m2 ponds stocked withOreochromis niloticus at 1 m–2, and fertilized weekly with chicken litter at 750 kg total solids ha–1. Mean WCR ranged from a low of 0.39 mg l–1 for 8 h nocturnal intervals to a high of 0.62 mg l–1 for 2-h diurnal intervals. WCR was significantly influenced by daylight and time into the diurnal or nocturnal period when it was determined. Mean WCR was significantly greater during the day than during the night (P<0.01). During the day, 2 h incubation intervals resulted in significantly higher WCR than 4 h or 8 h intervals (P<0.01); length of incubation interval did not significantly influence nocturnal WCR (P>0.05). Higher WCR during the day and during short diurnal incubation intervals was attributed to greater availability of photosynthetic respiration substrate. Diurnal, diel, or nocturnal WCR could be best estimated by a single 2, 4 or 8 h incubation interval, respectively, beginning at 0800 h.  相似文献   

19.
Two bioreactor continuous cultures, at anaerobic and aerobic conditions, were carried out using a recombinant Saccharomyces cerevisiae strain that over-expresses the homologous gene EXG1. This recombinant system was used to study the effect of dissolved oxygen concentration on plasmid stability and gene over-expression. Bioreactor cultures were operated at two dilution rates (0.14 and 0.03 h–1) to investigate the effect of other process parameters on EXG1 expression. Both cultures suffered severe plasmid instability during the first 16 generations. Segregational plasmid loss rate for the aerobic culture was two-fold that of the anaerobic operation. In spite of this fact, exo--glucanase activity at aerobic conditions was 12-fold that of the anaerobic culture. This maximal activity (30 U ml–1) was attained at the lowest dilution rate when biomass reached its greatest value and glucose concentration was zero.  相似文献   

20.
The physiological behaviour of Pseudomonas fluorescens strain R2fN was compared to that of transconjugants [R2fN(RP4)], and two aggregation phenotypes were identified (Agr and Agr+). Agr+ phenotype is characterized by the appearance of macroscopic aggregates when cells are growing in liquid media. Transconjugants exhibited Agr+ phenotype whereas wild type strain represented Agr. Evidence is presented to support correlation between Agr+ phenotype acquisition and the presence of the broad-host range plasmid RP4 in strain R2fN. In addition, according to bacterial adherence to hydrocarbon test the transconjugant cells appeared to be very hydrophilic whereas wild type R2fN cells were hydrophobic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号