首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damage induces apoptosis through a signalling pathway that can be suppressed by the BCL-2 protein, but the mechanism by which DNA damage does this is unknown. Here, using yeast two-hybrid and co-immunoprecipitation studies, we show that RAD9, a human protein involved in the control of a cell-cycle checkpoint, interacts with the anti-apoptotic Bcl-2-family proteins BCL-2 and BCL-x L, but not with the pro-apoptotic BAX and BAD. When overexpressed in mammalian cells, RAD9 induces apoptosis that can be blocked by BCL-2 or BCL-x L. Conversely, antisense RAD9 RNA suppresses cell death induced by methyl methanesulphonate. These findings indicate that RAD9 may have a new role in regulating apoptosis after DNA damage, in addition to its previously described checkpoint-control and other radioresistance-promoting functions.  相似文献   

2.
3.

Background

The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS), which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes.

Results

The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized.

Conclusions

Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional) proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.  相似文献   

4.
5.
Human immunodeficiency virus (HIV) infection, despite great advances in antiretroviral therapy, remains a lifelong affliction. Though current treatment regimens can effectively suppress viral load to undetectable levels and preserve healthy immune function, they cannot fully alleviate all symptoms caused by the presence of the virus, such as HIV-associated neurocognitive disorders. Exosomes are small vesicles that transport cellular proteins, RNA, and small molecules between cells as a mechanism of intercellular communication. Recent research has shown that HIV proteins and RNA can be packaged into exosomes and transported between cells, to pathogenic effect. This review summarizes the current knowledge on the diverse mechanisms involved in the sorting of viral elements into exosomes and the damage those exosomal agents can inflict. In addition, potential therapeutic options to counteract exosome-mediated HIV pathogenesis are reviewed and considered.  相似文献   

6.
7.
8.
9.
10.
11.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

12.
13.
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.  相似文献   

14.
15.
16.
Stucki M  Jackson SP 《DNA Repair》2004,3(8-9):953-957
The protein MDC1/NFBD1 contains a forkhead-associated (FHA) domain and two BRCA1 carboxyl-terminal (BRCT) domains. It interacts with several proteins involved in DNA damage repair and checkpoint signalling, and is phosphorylated in response to DNA damage and during mitosis. Upon treatment of cultured human cells with DNA damaging agents, MDC1/NFBD1 translocates to sites of DNA lesions, where it collaborates with other proteins and with phosphorylated histone H2AX to mediate the accumulation of checkpoint and repair factors into nuclear foci. Down-regulation of MDC1/NFBD1 expression levels by small interfering RNA (siRNA) renders cells hyper-sensitive to DNA damaging agents and leads to defects in cell cycle checkpoint activation and apoptosis. Thus, MDC1/NFBD1 appears to be a key regulator of the DNA damage response in mammalian cells.  相似文献   

17.
Mechanism of oxidative DNA damage repair and relevance to human pathology   总被引:1,自引:0,他引:1  
Since DNA is prone to oxidative attack cells have evolved multiple protective strategies to prevent the deleterious effects of DNA oxidation. Base excision repair is the major mechanism for repair of DNA base damage by reactive oxygen species but recent evidence indicate that nucleotide excision repair proteins, that are mutated in human syndromes, are involved too. The mechanisms of repair dealing with the direct oxidation of DNA will be reviewed taking as prototype the oxidized base 7,8-dihydro-8-hydroxyguanine. The function of the individual repair components as inferred from model mice indicate that the ablation of two gene functions is mostly required to lead to accumulation of oxidative DNA damage, mutagenesis and cancer development. The recent identification of human diseases associated with mutations in oxidative damage repair show that defects in this pathway may lead to increased cancer but their major causative role seems to be in neurological diseases.  相似文献   

18.
19.
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.Key words: chromosome condensation, DNA damage, G2/M checkpoint, ionizing radiation, PCC syndrome, primary microcephaly, repair foci  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号