首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation.  相似文献   

2.
Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short alpha-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

3.
Mu Y  Stock G 《Biophysical journal》2006,90(2):391-399
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.  相似文献   

4.
Complex carbohydrates linked to glycoproteins are recently being implicated to play a variety of biological roles. The lack of well-resolved crystallographic coordinates of the carbohydrates makes it difficult to assess the contributions of the glycan chain on protein structure and dynamics. We have modeled two different oligosaccharides NeuNAc2Gal3Man3GlcNAc5Fuc and Man3GlcNAc4 to generate two glycosylation variants of major histocompatibility complex (MHC) class I glycoprotein. Molecular dynamics simulations of the isolated fourteen- and seven-residue oligosaccharides have been done in vacuo and in solution. The dynamics of the two glycoforms of MHC class I protein have been simulated in solution in the free as well as in the peptide-bound form. Good agreement between the calculated solution conformations of the oligosaccharides in isolated and conjugated forms and the average conformations obtained from x-ray or NMR data was observed for most of the glycosidic linkages. These molecular dynamics simulations of the isolated glycan chains and the glycoconjugates reveal the details of the conformational flexibility of the glycan chains; they also provide atomic level details of protein-carbohydrate interactions and the effect of the ligand binding on the carbohydrate structure and dynamics. It was found that though there is some flexibility in some of the glycosidic linkages in the isolated oligosaccharides, in the protein-conjugated form the linkages adopt more restricted conformations. The glycan chains protrude out into the solvent and might hinder the lateral association of the proteins. The presence of the bulky glycan chains does not affect the average backbone fold of the protein but induces local changes in protein structure and dynamics. It has been noted that the extent of the changes depends upon the nature of the attached glycan chain. The glycan chains do not appear to influence the peptide binding property of the protein directly, but may stabilize the protein residues that are involved in ligand binding.  相似文献   

5.
A series of molecular dynamics simulations have been used to investigate the nature of monomeric and dimeric insulin in aqueous solution. It is shown that in the absence of crystal contacts both monomeric and dimeric insulin have a high degree of intrinsic flexibility. Neither of the two monomer conformations of 2Zn crystalline insulin appears to be favored in solution nor is the asymmetry of the crystal dimer reduced in the absence of crystal contacts. A shift is observed in the relative positions of molecules 1 and 2 in the dimer compared with that found in the crystal, which may have consequences for the prediction of the effects of mutants in the monomer-monomer interface designed to alter the self-association properties of insulin.  相似文献   

6.
Molecular Dynamics simulations have been carried out for 100 ps on crystal structure of beta-cyclodextrin in vacuo and with explicit inclusion of solvent at constant pressure and constant temperature using the GROMOS MD algorithm, with a time step of 0.005 ps. The conformational space of the glycosidic linkage was studied by calculating two virtual dihedrals connecting the successive glucose units for the 2000 structures saved during the two simulations. Three preferred regions for alpha 1-4 glycosidic linkage were found in both the simulations. The use of these virtual dihedral angles in representing the glycosidic linkage is also brought out from these studies.  相似文献   

7.
Extra unmatched nucleotides (single base bulges) are common structural motifs in folded RNA molecules and can participate in RNA-ligand binding and RNA tertiary structure formation. Often these processes are associated with conformational transitions in the bulge region such as flipping out of the bulge base from an intrahelical stacked toward a looped out state. Knowledge of the flexibility of bulge structures and energetics of conformational transitions is an important prerequisite to better understand the function of this RNA motif. Molecular dynamics simulations were performed on single uridine and adenosine bulge nucleotides at the center of eight basepair RNA molecules and indicated larger flexibility of the bulge bases compared to basepaired regions. The umbrella sampling method was applied to study the bulge base looping out process and accompanying conformational and free energy changes. Looping out toward the major groove resulted in partial disruption of adjacent basepairs and was found to be less favorable compared to looping out toward the minor groove. For both uridine and adenosine bulges, a positive free energy change for full looping out was obtained which was approximately 1.5 kcal mol-1 higher in the case of the adenosine compared to the uridine bulge system. The simulations also indicated stable partially looped out states with the bulge bases located in the RNA minor groove and forming base triples with 5'-neighboring basepairs. In the case of the uridine bulge this state was more stable than the intrahelical stacked bulge structure. Induced looping out toward the minor groove involved crossing of an energy barrier of approximately 3.5 kcal mol-1 before reaching the base triple state. A continuum solvent analysis of intermediate bulge states indicated that electrostatic interactions stabilize looped out and base triple states, whereas van der Waals interactions and nonpolar contributions favor the stacked bulge conformation.  相似文献   

8.
Molecular dynamics simulations (MD) have been performed on variant crystal and NMR-derived structures of the glucocorticoid receptor DNA-binding domain (GR DBD). A loop region five residues long, the so-called D-box, exhibits significant flexibility, and transient perturbations of the tetrahedral geometry of two structurally important Cys4 zinc finger are seen, coupled to conformational changes in the D-box. In some cases, one of the Cys ligands to zinc exchanges with water, although no global distortion of the protein structure is observed. Thus, from MD simulation, dynamics of the D-box could partly be explained by solvent effects in conjunction with structural reformation of the zinc finger.  相似文献   

9.
Periplasmic binding proteins are the initial receptors for the transport of various substrates over the inner membrane of gram-negative bacteria. The binding proteins are composed of two domains, and the substrate is entrapped between these domains. For several of the binding proteins it has been established that a closed-up conformation exists even without substrate present, suggesting a highly flexible apo-structure which would compete with the ligand-bound protein for the transporter interaction. For the leucine binding protein (LBP), structures of both open and closed conformations are known, but no closed-up structure without substrate has been reported. Here we present molecular dynamics simulations exploring the conformational flexibility of LBP. Coarse grained models based on the MARTINI force field are used to access the microsecond timescale. We show that a standard MARTINI model cannot maintain the structural stability of the protein whereas the ELNEDIN extension to MARTINI enables simulations showing a stable protein structure and nanosecond dynamics comparable to atomistic simulations, but does not allow the simulation of conformational flexibility. A modification to the MARTINI-ELNEDIN setup, referred to as domELNEDIN, is therefore presented. The domELNEDIN setup allows the protein domains to move independently and thus allows for the simulation of conformational changes. Microsecond domELNEDIN simulations starting from either the open or the closed conformations consistently show that also for LBP, the apo-structure is flexible and can exist in a closed form.
Figure
Closed and open conformations of the Leucine Binding Protein. Thin gray lines show the elastic network maintaining tertiary structure in coarse grained (CG) simulations. Red lines show elastic network bonds present in the ELNEDIN CG model, but removed in the domELNEDIN CG model, to allow for free protein domain motion  相似文献   

10.
According to the different nucleotide occupancies of the F(1)-ATPase beta-subunits and due to the asymmetry imposed through the central gamma-subunit, the beta-subunit adopts different conformations in the crystal structures. Recently, a spontaneous and nucleotide-independent closure of the open beta-subunit upon rotation of the gamma-subunit has been proposed. To address the question whether this closure is dictated by interactions to neighbored subunits or whether the open beta-subunit behaves like a prestressed "spring," we report multinanosecond molecular dynamics simulations of the isolated beta-subunit with different start conformations and different nucleotide occupancies. We have observed a fast, spontaneous closure motion of the open beta(E)-subunit, consistent with the available x-ray structures. The motions and kinetics are similar to those observed in simulations of the full (alpha beta)(3)gamma-complex, which support the view of a prestressed "spring," i.e., that forces internal to the beta(E)-subunit dominate possible interactions from adjacent alpha-subunits. Additionally, nucleotide removal is found to trigger conformational transitions of the closed beta(TP)-subunit; this provides evidence that the recently resolved half-closed beta-subunit conformation is an intermediate state before product release. The observed motions provide a plausible explanation why ADP and P(i) are required for the release of bound ATP and why gamma-depleted (alpha beta)(3) has a drastically reduced hydrolysis rate.  相似文献   

11.
Employing nonequilibrium molecular dynamics simulations, a comprehensive computational study of the photoinduced conformational dynamics of a photoswitchable bicyclic azobenzene octapeptide is presented. The calculation of time-dependent probability distributions along various global and local reaction coordinates reveals that the conformational rearrangement of the peptide is rather complex and occurs on at least four timescales: 1) After photoexcitation, the azobenzene unit of the molecule undergoes nonadiabatic photoisomerization within 0.2 ps. 2) On the picosecond timescale, the cooling (13 ps) and the stretching (14 ps) of the photoexcited peptide is observed. 3) Most reaction coordinates exhibit a 50-100 ps component reflecting a fast conformational rearrangement. 4) The 500-1000 ps component observed in the simulation accounts for the slow diffusion-controlled conformational equilibration of the system. The simulation of the photoinduced molecular processes is in remarkable agreement with time-resolved optical and infrared experiments, although the calculated cooling as well as the initial conformational rearrangements of the peptide appear to be somewhat too slow. Based on an ab initio parameterized vibrational Hamiltonian, the time-dependent amide I frequency shift is calculated. Both intramolecular and solvent-induced contributions to the frequency shift were found to change by < or = 2 cm(-1), in reasonable agreement with experiment. The potential of transient infrared spectra to characterize the conformational dynamics of peptides is discussed in some detail.  相似文献   

12.
MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the alpha(1)/alpha(2) peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the alpha(2)-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.  相似文献   

13.
Two molecular dynamics simulations have been performed for 2 ns, at room temperature, on fully hydrated wild type and Cys3Ala/Cys26Ala double-mutant azurin, to investigate the role of the unique disulfide bridge on the structure and dynamics of the protein. The results show that the removal of the [bond]SS[bond] bond does not affect the structural features of the protein, whereas alterations of the dynamical properties are observed. The root mean square fluctuations of the atomic positions are, on average, considerably reduced in the azurin mutant with respect to the wild type form. The number of intramolecular hydrogen bonds between protein backbone atoms that are lost during the simulation, with respect to the starting configuration, are reduced in the absence of the disulfide bond. The analysis of the dynamical cross-correlation map, characterising the protein co-ordinated internal motions, demonstrates in the mutated azurin a significant decrease in anti-correlated displacements between protein residues, with the only exception occurring in the region of the mutation sites. The overall findings show a relevant reduction in flexibility as a consequence of the disulfide bridge depletion in azurin, suggesting that the [bond]SS[bond] bond is a structural element which significantly contributes to the dynamic properties of the native protein.  相似文献   

14.
DSS1 is a small acidic intrinsically disordered protein (IDP) that can fold upon binding with PCID2 TREX-2. The resulting complex plays a key role in mRNA export. However, the binding mechanism between DSS1 and PCID2 is unsolved. Here, three independent 500-ns molecular dynamics (MD) simulations were performed to study the DSS1–PCID2 binding mechanism by comparing apo-PCID2 and bound PCID2. The results show that the conformational variation of bound PCID2 is smaller than that of apo-PCID2, especially in the binding domain of two helices (helix IV and VIII). The probability of coil formation between helix III and helix IV of bound PCID2 increases, and a short anti-parallel β-sheet forms upon DSS1 binding. The decomposition of binding free energy into protein and residue pairs suggests that electrostatic and hydrophobic interactions play key roles in the recognition between DSS1 and PCID2. There is a hydrophobic core of seven residues in DSS1 favorable to the binding of PCID2. These analytical methods can be used to reveal the recognition mechanisms of other IDPs and their partners.
Figure Differences of second structure of PCID2 in bound and unbound states. The interaction surface between the helix VIII of PCID2 and helix of DSS1
  相似文献   

15.
Summary The conformation of a benzodiazepine-like decapeptide corresponding to the YLGYLEQLLR fragment of a casein has been examined in a sodium dodecyl sulfate micellar medium using circular dichroism, two-dimensional1H NMR spectroscopy and restrained molecular dynamics simulation. The decapeptide adopts an amphipathic 310-helicoid structure in which the E6...R10 ionic bridge stabilizes the C-terminus.  相似文献   

16.
Nucleic acid duplexes featuring a single alpha-anomeric thymidine inserted into each DNA strand via 3-3 and 5-5 phosphodiester linkages exhibit local conformational dynamics that are not adequately depicted by conventional restrained molecular dynamics (rMD) methods. We have used molecular dynamics with time-averaged NMR restraints (MDtar) to explore its applicability to describing the conformational dynamics of two -containing duplexes – d(GCGAAT-3-3-T-5-5-CGC)2 and d(ATGG-3-3-T-5-5-GCTC)r(gagcaccau). In contrast to rMD, enforcing NOE-based distance restraints over a period of time in MDtar rather than instantaneously results in better agreement with the experimental NOE and J-data. This conclusion is based on the dramatic decreases in average distance and coupling constant violations (d av, J rms, and J av) and improvements in sixth-root R-factors (R x). In both duplexes, the deoxyribose ring puckering behavior predicted independently by pseudorotation analysis is portrayed remarkably well using this approach compared to rMD. This indicates that the local dynamic behavior is encoded within the NOE data, although this is not obvious from the local R x values. In both systems, the backbone torsion angles comprising the 3-3 linkage as well as the (high S-) sugars of the -nucleotide and preceding residue (–1) are relatively static, while the conformations of the 5-5 linkage and the sugar in the neighboring -nucleotide (+1) show enhanced flexibility. To reduce the large ensembles generated by MDtar to more manageable clusters we utilized the PDQPRO program. The resulting PDQPRO clusters (in both cases, 13 structures and associated probabilities extracted from a pool of 300 structures) adequately represent the structural and dynamic characteristics predicted by the experimental data.  相似文献   

17.
In an effort to better understand the initial mechanism of selectivity and membrane association of the synthetic antimicrobial peptide NK‐2, we have applied molecular dynamics simulation techniques to elucidate the interaction of the peptide with the membrane interfaces. A homogeneous dipalmitoylphosphatidylglycerol (DPPG) and a homogeneous dipalmitoylphosphatidylethanolamine (DPPE) bilayers were taken as model systems for the cytoplasmic bacterial and human erythrocyte membranes, respectively. The results of our simulations on DPPG and DPPE model membranes in the gel phase show that the binding of the peptide, which is considerably stronger for the negatively charged DPPG lipid bilayer than for the zwitterionic DPPE, is mostly governed by electrostatic interactions between negatively charged residues in the membrane and positively charged residues in the peptide. In addition, a characteristic distribution of positively charged residues along the helix facilitates a peptide orientation parallel to the membrane interface. Once the peptides reside close to the membrane surface of DPPG with the more hydrophobic side chains embedded into the membrane interface, the peptide initially disturbs the respective bilayer integrity by a decrease of the order parameter of lipid acyl chain close to the head group region, and by a slightly decrease in bilayer thickness. We found that the peptide retains a high content of helical structure on the zwitterionic membrane‐water interface, while the loss of α‐helicity is observed within a peptide adsorbed onto negatively charged lipid membranes. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Valinomycin is a highly flexible cyclic dodecadepsipeptide that transports ions across membranes. Such a flexibility in the conformation is required for its biological function since it has to encounter a variety of environments and liganding state. Exploration of conformational space of this molecule is therefore important and is one of the objectives of the present study that has been carried out by means of high temperature Molecular Dynamics. Further, the stability of the known bracelet-like structure of the uncomplexed valinomycin and the inherent flexibility around this structure has been investigated. The uncomplexed form of valinomycin has been simulated at 75-100 K for 1 ns in order to elucidate the average conformational properties. An alanine-analog of valinomycin has been simulated under identical conditions in order to evaluate the effect of sidechain on the conformational properties, The studies confirm the effect of sidechain on conformational equilibrium.  相似文献   

19.
The TT mismatch region in duplex d (CGCGATTCGCG) was studied using a 500-ps molecular dynamics (MD) simulation in water, and a series of 1-ps MD simulations and energy minimizations in vacuum. The DNA maintained its duplex structure, although the mismatch region showed significantly higher flexibility than the GC regions. The predominant conformation in the 500-ps MD simulation involved an average -42 degrees propeller twist between T6 and T'6, and a -22 degree buckle between A5 and T'7. One hydrogen bond was formed between T6 and T'6, and another between T6 and the O2 of T'7, with both Watson-Crick hydrogen bonds between A5 and T'7 remaining intact. The minimizations resulted in conformations with the equivalent hydrogen-bonding pattern, as well as ones with "wobble pair" hydrogen bonds between T6 and T'6. However, the wobble pair conformation was found to be unstable in the water simulation.  相似文献   

20.
The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was approximately 4-6 kcal mol(-1) in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly ( approximately 2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号