首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. Studies investigating sex ratio variation in mammals have produced notoriously inconsistent results, although recent studies suggest more consistency if sex ratio variation is related to maternal condition at conception, potentially mediated by changes in circulating glucose level. Consequently, we hypothesized that change in condition might better predict sex ratio variation than condition per se. Here, we investigate sex ratio variation in feral horses (Equus caballus), where sex ratio variation was previously shown to be related to maternal condition at conception. We used condition measures before and after conception to measure the change in condition around conception in individual mothers. The relationship with sex ratio was substantially more extreme than previously reported: 3% of females losing condition gave birth to a son, whereas 80% of those females that were gaining condition gave birth to a son. Change in condition is more predictive of sex ratio than actual condition, supporting previous studies, and shows the most extreme variation in mammals ever reported.  相似文献   

2.
Experimental alteration of litter sex ratios in a mammal   总被引:1,自引:0,他引:1  
Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. Studies investigating sex ratio variation in mammals, including humans, have obtained notoriously inconsistent results, except when maternal condition is measured around conception. Several mechanisms for sex ratio adjustment have been proposed. Here, we test the hypothesis that glucose concentrations around conception influence sex ratios. The change in glucose levels resulted in a change in sex ratios, with more daughters being born to females with experimentally lowered glucose, and with the change in glucose levels being more predictive than the glucose levels per se. We provide evidence for a mechanism, which, in tandem with other mechanisms, could explain observed sex ratio variation in mammals.  相似文献   

3.
POTENTIAL MECHANISMS FOR SEX RATIO ADJUSTMENT IN MAMMALS AND BIRDS   总被引:11,自引:0,他引:11  
Sex ratio skews in relation to a variety of environmental or parental conditions have frequently been reported among mammals and, though less commonly, among birds. However, the adaptive significance of such sex ratio variation remains unclear. This has, in part, been attributed to the absence of a low-cost physiological mechanism for sex ratio manipulation by the parent. It is shown here that several recent findings in reproductive biology are suggestive of many potential pathways by which gonadotropins and steroid hormones could interfere with the sex ratio at birth. And these hormone levels are well-known to be influenced by many parameters which have been invoked in correlating with offspring sex ratios. Hence, it is argued that the significant, but inconsistent sex ratio biases reported in mammalian and avian populations are coherent with current knowledge on reproductive physiology in those species. However, whether such variations can be viewed at as a consequence of physiological constraint or as adaptive sex ratio adjustment, has still to be determined.  相似文献   

4.
There is general agreement that adaptive variation of sex ratio at birth has not been decisively demonstrated in primates (including human beings). So some workers have questioned whether it actually exists. Others have conjectured that it exists but is subject to as yet unidentified 'constraints' (factors opposing the modifying influences of selection in the phenotype). Meanwhile though most workers have called for research to reveal the proximate causes of sex ratio variation, few (if any) have directed studies toward that end. Here it is argued that hormonal action is responsible both for much adaptive and non-adaptive sex ratio variation, and for constraints on the adaptive variation. My hypothesis proposes that levels of steroid hormones (testosterone and oestrogen) of both parents around the time of conception are positively associated with offspring sex ratio (proportion male at birth) of mammals including man. Testosterone in men and oestrogen in women are also known to be positively associated with the health, attractiveness and fertility of individual human beings. However, high levels of testosterone in women are frequently associated with adverse medical conditions. It is suggested that for these reasons (and contrary to some adaptive theory) some classes of people (particularly women) in suboptimal health ("condition") produce excesses of sons. It seems that gonadal hormones are responsible for adaptive variation; and that maternal adrenal hormones are responsible for maladaptive variation. In evolutionary terms, gonadal hormones precede adrenal hormones.  相似文献   

5.
Could maternal testosterone levels govern mammalian sex ratio deviations?   总被引:2,自引:0,他引:2  
Although maternal dominance and good condition are frequently associated with raised offspring sex ratios in mammals, the key factor may be female testosterone, which not only underpins the behavioural indicators but could also provide a pathway to a possible proximate mechanism for sex determination. By taking into account the fact that female testosterone levels rise in response to environmental stressors, it is possible to re-interpret the findings of atypical sex ratios in mammals in a way that reconciles seemingly conflicting results and reveals instead what could be a coherent, adaptive system of sex allocation in mammals.  相似文献   

6.
1.  Human sex ratio at birth at the population level has been suggested to vary according to exogenous stressors such as wars, ambient temperature, ecological disasters and economic crises, but their relative effects on birth sex ratio have not been investigated. It also remains unclear whether such associations represent environmental forcing or adaptive parental response, as parents may produce the sex that has better survival prospects and fitness in a given environmental challenge.
2.  We examined the simultaneous role of wars, famine, ambient temperature, economic development and total mortality rate on the annual variation of offspring birth sex ratio and whether this variation, in turn, was related to sex-specific infant mortality rate in Finland during 1865–2003.
3.  Our findings show an increased excess of male births during the World War II and during warm years. Instead, economic development, famine, short-lasting Finnish civil war and total mortality rate were not related to birth sex ratio. Moreover, we found no association between annual birth sex ratio and sex-biased infant mortality rate among the concurrent cohort.
4.  Our results propose that some exogenous challenges like ambient temperature and war can skew human birth sex ratio and that these deviations likely represent environmental forcing rather than adaptive parental response to such challenges.  相似文献   

7.
As the number of breeding pairs depends on the adult sex ratio in a monogamous species with biparental care, investigating sex-ratio variability in natural populations is essential to understand population dynamics. Using 10 years of data (2000–2009) in a seasonally monogamous seabird, the king penguin (Aptenodytes patagonicus), we investigated the annual sex ratio at fledging, and the potential environmental causes for its variation. Over more than 4000 birds, the annual sex ratio at fledging was highly variable (ranging from 44.4% to 58.3% of males), and on average slightly biased towards males (51.6%). Yearly variation in sex-ratio bias was neither related to density within the colony, nor to global or local oceanographic conditions known to affect both the productivity and accessibility of penguin foraging areas. However, rising sea surface temperature coincided with an increase in fledging sex-ratio variability. Fledging sex ratio was also correlated with difference in body condition between male and female fledglings. When more males were produced in a given year, their body condition was higher (and reciprocally), suggesting that parents might adopt a sex-biased allocation strategy depending on yearly environmental conditions and/or that the effect of environmental parameters on chick condition and survival may be sex-dependent. The initial bias in sex ratio observed at the juvenile stage tended to return to 1∶1 equilibrium upon first breeding attempts, as would be expected from Fisher’s classic theory of offspring sex-ratio variation.  相似文献   

8.
Dama MS 《PloS one》2011,6(8):e23792
Evolutionary theory posits that resource availability and parental investment ability could signal offspring sex selection, in order to maximize reproductive returns. Non-human studies have provided evidence for this phenomenon, and maternal condition around the time of conception has been identified as most important factor that influence offspring sex selection. However, studies on humans have reported inconsistent results, mostly due to use of disparate measures as indicators of maternal condition. In the present study, the cross-cultural differences in human natal sex ratio were analyzed with respect to indirect measures of condition namely, life expectancy and mortality rate. Multiple regression modeling suggested that mortality rates have distinct predictive power independent of cross-cultural differences in fertility, wealth and latitude that were earlier shown to predict sex ratio at birth. These findings suggest that sex ratio variation in humans may relate to differences in parental and environmental conditions.  相似文献   

9.

Background

Natural selection should favour the ability of mothers to adjust the sex ratio of offspring in relation to the offspring''s potential reproductive success. In polygynous species, mothers in good condition would be advantaged by giving birth to more sons. While studies on mammals in general provide support for the hypothesis, studies on humans provide particularly inconsistent results, possibly because the assumptions of the model do not apply.

Methodology/Principal Findings

Here, we take a subset of humans in very good condition: the Forbe''s billionaire list. First, we test if the assumptions of the model apply, and show that mothers leave more grandchildren through their sons than through their daughters. We then show that billionaires have 60% sons, which is significantly different from the general population, consistent with our hypothesis. However, women who themselves are billionaires have fewer sons than women having children with billionaires, suggesting that maternal testosterone does not explain the observed variation. Furthermore, paternal masculinity as indexed by achievement, could not explain the variation, since there was no variation in sex ratio between self-made or inherited billionaires.

Conclusions/Significance

Humans in the highest economic bracket leave more grandchildren through sons than through daughters. Therefore, adaptive variation in sex ratios is expected, and human mothers in the highest economic bracket do give birth to more sons, suggesting similar sex ratio manipulation as seen in other mammals.  相似文献   

10.
  • 1 Adaptive adjustments in offspring sex ratios in mammals have long been reported, but the conditions and mechanisms that prompt shifts in the proportion of sons and daughters born are still unclear.
  • 2 Empirical evidence indicates that offspring sex in mammals can be related to a diversity of environmental and maternal traits. However, the underlying assumptions regarding offspring and maternal fitness are rarely tested.
  • 3 Physiological mechanisms of maternal selection of offspring sex may occur at many stages during the prolonged maternal investment stage, and a pluralistic approach to studying mechanisms might prove fruitful.
  • 4 This review highlights the apparent frequency, in marsupial mammals, of sex ratio bias, which has largely been recorded as conforming to one of a few hypotheses.
  • 5 Marsupials are ideally suited to experiments involving cross‐fostering of offspring, which can allow rigorous tests of the fitness consequences of rearing one sex vs. the other. The reproductive biology of marsupials lends the group to detailed studies of the timing and physiological correlates of offspring sex biases.
  • 6 Many components of metatherian biology may prove advantageous in experimental studies of sex allocation in mammals, and together may provide a prosperous avenue for examining adaptive and mechanistic hypotheses in mammalian sex allocation.
  相似文献   

11.
Sex ratio adjustment has become a hot topic in ecology and evolutionary biology, as documentations of sex ratio skews are numerous, and include examples in diverse animal species. Over the past several decades, scientists have repeatedly debated whether human sex ratios also significantly deviate toward one sex or the other based on environmental or social conditions. An increasing number of studies supports the idea that exposure to stressful conditions can influence the sexes of offspring produced by humans, a majority of which document significantly fewer males after exposure to adverse conditions such as severe life events, economic disruption, or natural disasters. From a comparative standpoint, these findings are similar to studies in non-human mammals and other vertebrate species showing a bias toward females during times of stress. However, the mechanisms by which stress-related biases in the offspring sex ratio may occur remain elusive, and the involvement of glucocorticoids indicating a true influence of stress itself remains unstudied. Here, I review the evidence that stressful events induce sex ratio adjustment in humans. Additionally, I discuss the possibility for glucocorticoid mediation of sex ratio adjustment and the potential reproductive stages during which stress-induced sex ratio adjustment may occur in humans and other mammals.  相似文献   

12.
Sex ratio variation in mammals   总被引:24,自引:0,他引:24  
Parents will increase their fitness by varying the sex ratio of their progeny in response to differences in the costs and benefits of producing sons and daughters. Sex differences in energy requirements or viability during early growth, differences in the relative fitness of male and female offspring, and competition or cooperation between siblings or between siblings and parents might all be expected to affect the sex ratio. Although few trends have yet been shown to be consistent, growing numbers of studies have demonstrated significant variation in birth sex ratios in non-human mammals. These are commonly cited as evidence of adaptive manipulation of the sex ratio. However, several different mechanisms may affect the birth sex ratio, and not all of them are likely to be adaptive. Valid evidence that sex ratio trends are adaptive must be based either on the overall distribution of those trends or on cases in which the sex ratio can be shown to vary with the relative fitness of producing sons and daughters. The distribution of observed sex ratio trends does not conform closely to the predictions of any single adaptive theory. Some recent studies, however, indicate that, within species, the sex ratio varies with the costs or benefits of producing male or female offspring.  相似文献   

13.
Egg sex ratio and paternal traits: using within-individual comparisons   总被引:9,自引:3,他引:6  
Empirical studies of sex ratios in birds have been limited dueto difficulties in determining offspring sex. Since molecularsexing techniques removed this constraint, the last 5 yearshas seen a great increase in studies of clutch sex ratio manipulationby female birds. Typically these studies investigate variationin clutch sex ratios across individuals in relation to environmentalcharacteristics or parental traits, and often they find no relationships. In this study we also found that clutch sex ratiosdid not vary in relation to a number of biological and environmentalfactors for 238 great tit Parus major nests. However, interestingsex ratio biases were revealed when variation in clutch sexratios was analyzed within individual females breeding in successiveyears. There was a significant positive relationship betweenthe change in sex ratio of a female's clutch from one yearto the next and the relative body condition of her partner.Females mating with males of higher body condition in yearx + 1 produced relatively male-biased sex ratios, and the oppositewas true for females mated with lower condition males. Within-individualanalysis also allowed investigations of sex ratio in relationto partner change. There was no change in sex ratios of femalespairing with the same male; however, females pairing with anew male produced clutches significantly more female biased. Comparisons of clutch sex ratios within individuals may be apowerful method for detecting sex ratio variation, and perhapsfemale birds may indeed manipulate egg sex but require personalcontextual experience for such decisions.  相似文献   

14.
Variation in sex differences is affected by both genetic and environmental variation, with rapid change in sex differences being more likely due to environmental change. One case of rapid change in sex differences is human lifespan, which has become increasingly female‐biased in recent centuries. Long‐term consequences of variation in the early‐life environment may, in part, explain such variation in sex differences, but whether the early‐life environment mediates sex differences in life‐history traits is poorly understood in animals. Combining longitudinal data on 60 cohorts of pre‐industrial Finns with environmental data, we show that the early‐life environment is associated with sex differences in adult mortality and expected lifespan. Specifically, low infant survival rates and high rye yields (an important food source) in early‐life are associated with female‐bias in adult lifespan. These results support the hypothesis that environmental change has the potential to affect sex differences in life‐history traits in natural populations of long‐lived mammals.  相似文献   

15.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
Birth sex ratios relate to mare condition at conception in Kaimanawa horses   总被引:3,自引:3,他引:0  
Several hypotheses have been proposed to explain variation inbirth sex ratios, based on the premise that variation is expectedwhen the profitability of raising sons and daughters variesbetween individual parents. We tested the Trivers-Willard hypothesisthat mothers in better condition produce relatively more sonsand that mothers in poorer condition produce relatively more daughterswhen male reproductive success is more variable. We examinedbirth sex ratios in relation to mare body condition at conceptionin horses in which male reproductive success is differentiallyhelped by slight advantages in condition. Horses meet the assumptionsof the Trivers-Willard hypothesis better than many species onwhich it has been tested and in which sex ratio biases are notconfounded by sexual size dimorphism such that one sex is more likelyto die in utero in females in poor condition. Mares that hada female foal were in poorer condition at conception than thosethat had a male foal, and mares that had foals of differentsexes in different years were in significantly poorer conditionwhen they conceived their female foal. There was no relationshipbetween offspring sex and mid-gestation condition, and therewas no difference in foaling rates in relation to body conditionat conception. Consequently, sex ratio deviations are not explainedby fetal loss in utero. Furthermore, differential fetal lossof the less viable sex cannot explain the greater proportionof males produced by mares in better condition. Therefore, ourresults suggest that sex ratio modification occurs at conceptionin wild horses.  相似文献   

17.
The adaptive manipulation of offspring sex and number has been of considerable interest to ecologists and evolutionary biologists. The physiological mechanisms that translate maternal condition and environmental cues into adaptive responses in offspring sex and number, however, remain obscure. In mammals, research into the mechanisms responsible for adaptive sex allocation has focused on two major endocrine axes: the hypothalamic pituitary adrenal (HPA) axis and glucocorticoids, and the hypothalamic pituitary gonadal (HPG) axis and sex steroids, particularly testosterone. While stress-induced activation of the HPA axis provides an intuitive model for sex ratio and litter size adjustment, plasma glucocorticoids exist in both bound and free fractions, and may be acting indirectly, for example by affecting plasma glucose levels. Furthermore, in female mammals, activation of the HPA axis stimulates the secretion of adrenal testosterone in addition to glucocorticoids (GCs). To begin to untangle these physiological mechanisms influencing offspring sex and number, we simultaneously examined fecal glucocorticoid metabolites, free and bound plasma cortisol, free testosterone, and plasma glucose concentration during both gestation and lactation in a free-living rodent (Urocitellus richardsonii). We also collected data on offspring sex and litter size from focal females and from a larger study population. Consistent with previous work in this population, we found evidence for a trade-off between offspring sex and number, as well as positive and negative correlations between glucocorticoids and sex ratio and litter size, respectively, during gestation (but not lactation). We also observed a negative relationship between testosterone and litter size during gestation (but not lactation), but no effect of glucose on either sex ratio or litter size. Our findings highlight the importance of binding proteins, cross-talk between endocrine systems, and temporal windows in the regulation of trade-offs in offspring sex and number.  相似文献   

18.
Colonies of a social spider Achaearanea wau (Theridiidae) from Papua, New Guinea have adult and juvenile sex ratios that are biased towards females, and this probably represents a primary bias at the egg stage. Adult sex ratios are less female-biased than are juvenile sex ratios, and both vary significantly among colonies. Adult sex ratios covary with colony size: small colonies have a larger proportion of males than large ones. The pattern of variation in adult sex ratio may be due to greater mortality of females than of males during maturation. Juvenile sex ratios do not covary with colony size, nor do they differ among populations. Colony size, however, does have a significant effect on survival and dispersal in colonies. I conclude, therefore, that a conditional sex ratio strategy, in which the primary sex ratio of the colony is adjusted to changing demographic patterns, does not occur in A. wau. I suggest that environmental heterogeneity acting on individual reproductive output may be responsible for the observed variation among colonies in juvenile sex ratios.  相似文献   

19.
The local-resource-competition hypothesis predicts that where philopatric offspring compete for resources with their mothers, offspring sex ratios will be biased in favour of the dispersing sex. This should produce variation in sex ratios between populations in relation to differences in the availability of resources for philopatric offspring. However, previous tests of local resource competition in mammals have used indirect measures of resource availability and have focused on sex-ratio variation between species or individuals rather than between local populations. Here, we show that the availability of den sites predicts the offspring sex ratio in populations of the common brushtail possum. Female possums defend access to dens, and daughters, but not sons, occupy dens within their mother's range. However, the abundances of possums in our study areas were determined principally by food availability. Consequently, in food-rich areas with a high population density, the per-capita availability of dens was low, and the cost of having a daughter should have been high. This cost was positively correlated with male bias in the sex ratio at birth. Low per capita availability of dens was correlated with male bias in the sex ratio at birth.  相似文献   

20.
1.  The Trivers–Willard model of optimal sex ratios predicts that in polygynous species mothers in better condition should produce more male than female offspring. However, empirical support for this hypothesis in mammals and especially ungulates has been equivocal. This may be because the fitness of mothers has been defined in different ways, reflecting morphological, physiological or behavioural measures of condition. In addition, factors other than maternal condition can influence a mother's fitness. Given that recent studies of wild ungulates have demonstrated the importance of the timing of conception and birth on offspring fitness, litters conceived at different stages of the rut might be expected to exhibit differences in types and embryonic sex ratio.
2.  Based on a 6-year survey of the reproductive tracts of female moose harvested in Estonia, we investigated the effect of conception date on the types of litters produced and on the foetal sex ratio.
3.  There was a clear relationship between conception date and litter characteristics. Overall, earlier conceived litters were more likely than those conceived late to contain multiple embryos and a high proportion of males. However, while foetal sex ratio varied nonlinearly with conception date in yearlings and subadults, no relationship was found in adults.
4.  We conclude that female moose adjust foetal sex ratio and litter type/size depending on their age and the date of conception, and that these adjustments are in accordance with the Trivers–Willard hypothesis if females that conceive earlier are in better condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号