首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
CO dehydrogenase/acetyl-coenzyme A synthase (CODH) is the central enzyme in the pathway of acetyl-coenzyme A biosynthesis in Clostridium thermoaceticum. It catalyzes the interconversion of CO and CO2 and the synthesis of acetyl-coenzyme A from the methylated corrinoid/iron sulfur protein, CO, and coenzyme A. It is a nickel-iron-sulfur protein and contains two subunits in the form (alpha beta)3. Reported here is the cloning and sequencing of the genes for both subunits of CODH. The gene for the alpha subunit codes for a protein with 729 amino acids and a molecular weight of 81,730, and the beta gene for a protein with 674 amino acids and a molecular weight of 72,928. The alpha subunit follows the beta subunit by 23 bases and the genes for both subunits are preceded by a sequence which is similar to the Shine-Dalgarno sequence of Escherichia coli. No significant amino acid sequence homology has been found to any known sequence. Labeling CODH with 2,4-dinitrophenylsulfenyl chloride and isolating labeled peptide fragments demonstrated that a tryptophan, residue 418 of the alpha subunit, is protected by coenzyme A and thus may be considered a potential part of the coenzyme A site.  相似文献   

2.
The high affinity receptor for IgE (Fc epsilon RI) is a tetrameric structure consisting of a single IgE-binding alpha subunit, a single beta subunit, and two disulfide-linked gamma subunits. The alpha subunit of Fc epsilon RI and most Fc receptors are homologous members of the Ig superfamily. By contrast, the beta and gamma subunits from Fc epsilon RI are not homologous to the Ig superfamily. The gamma-chains do share a region of high homology with the zeta-chain of the TCR. No homology has been found to date for beta with any published sequence. Here, we report that a single copy gene encodes Fc epsilon RI beta and that the locus for Fc epsilon RI beta is found on mouse chromosome 19, genetically linked to the Ly-1 (Ly-12) locus and in a region that also contains Ly-10 and Ly-44 (CD20). Homology comparisons among these molecules reveal limited regions of homology between Fc epsilon RI beta and Ly-44 (CD20) as well as other striking similarities: both molecules have four putative transmembrane segments and a probably topology where both amino- and carboxytermini protrude into the cytoplasm. In addition, we show that a single gene for FC epsilon RI gamma is found at the distal end of mouse chromosome 1, clustered in a region where Fc epsilon RI alpha has also been linked to Fc gamma RII. At least one of the two forms of Fc gamma RII has recently been shown to contain gamma subunits identical to the gamma subunits of Fc epsilon RI. The close association of the genes for Fc epsilon RI alpha, FC gamma RII, and their shared gamma subunits raises interesting implications regarding coordinate regulation of gene expression.  相似文献   

3.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

4.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

5.
6.
The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.  相似文献   

7.
8.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

9.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

10.
The STE4 and STE18 genes are required for haploid yeast cell mating. Sequencing of the cloned genes revealed that the STE4 polypeptide shows extensive homology to the beta subunits of mammalian G proteins, while the STE18 polypeptide shows weak similarity to the gamma subunit of transducin. Null mutations in either gene can suppress the haploid-specific cell-cycle arrest caused by mutations in the SCG1 gene (previously shown to encode a protein with similarity to the alpha subunit of G proteins). We propose that the products of the STE4 and STE18 genes comprise the beta and gamma subunits of a G protein complex coupled to the mating pheromone receptors. The genetic data suggest pheromone-receptor binding leads to the dissociation of the alpha subunit from beta gamma (as shown for mammalian G proteins), and the free beta gamma element initiates the pheromone response.  相似文献   

11.
BslI is a thermostable type II restriction endonuclease with interrupted recognition sequence CCNNNNN/NNGG (/, cleavage position). The BslI restriction-modification system from Bacillus species was cloned and expressed in Escherichia coli. The system is encoded by three genes: the 2,739-bp BslI methylase gene (bslIM), the bslIRalpha gene, and the bslIRbeta gene. The alpha and beta subunits of BslI can be expressed independently in E. coli in the absence of BslI methylase (M.BslI) protection. BslI endonuclease activity can be reconstituted in vitro by mixing the two subunits together. Gel filtration chromatography and native polyacrylamide gel electrophoresis indicated that BslI forms heterodimers (alphabeta), heterotetramers (alpha(2)beta(2)), and possibly oligomers in solution. Two beta subunits can be cross-linked by a chemical cross-linking agent, indicating formation of heterotetramer BslI complex (alpha(2)beta(2)). In DNA mobility shift assays, neither subunit alone can bind DNA. DNA mobility shift activity was detected after mixing the two subunits together. Because of the symmetric recognition sequence of the BslI endonuclease, we propose that its active form is alpha(2)beta(2). M.BslI contains nine conserved motifs of N-4 cytosine DNA methylases within the beta group of aminomethyltransferase. Synthetic duplex deoxyoligonucleotides containing cytosine hemimethylated or fully methylated at N-4 in BslI sites in the first or second cytosine are resistant to BslI digestion. C-5 methylation of the second cytosine on both strands within the recognition sequence also renders the site refractory to BslI digestion. Two putative zinc fingers are found in the alpha subunit of BslI endonuclease.  相似文献   

12.
RNA polymerases of cyanobacteria contain a novel core subunit, gamma, which is absent from the RNA polymerases of other eubacteria. The genes encoding the three largest subunits of RNA polymerase, including gamma, have been isolated from the cyanobacterium Anabaena sp. strain PCC 7120. The genes are linked in the order rpoB, rpoC1, rpoC2 and encode the beta, gamma, and beta' subunits, respectively. These genes are analogous to the rpoBC operon of Escherichia coli, but the functions of rpoC have been split in Anabaena between two genes, rpoC1 and rpoC2. The DNA sequence of the rpoC1 gene was determined and shows that the gamma subunit corresponds to the amino-terminal half of the E. coli beta' subunit. The gamma protein contains several conserved domains found in the largest subunits of all bacterial and eukaryotic RNA polymerases, including a potential zinc finger motif. The spliced rpoC1 gene from spinach chloroplast DNA was expressed in E. coli and shown to encode a protein immunologically related to Anabaena gamma. The similarities in the RNA polymerase gene products and gene organizations between cyanobacteria and chloroplasts support the cyanobacterial origin of chloroplasts and a divergent evolutionary pathway among eubacteria.  相似文献   

13.
The gene coding for the subunits of aspartokinase II from Bacillus subtilis has been identified in a B. subtilis DNA library and cloned in a bacterial plasmid (Bondaryk, R. P., and Paulus, H. (1984) J. Biol. Chem. 259, 585-591). The introduction of a plasmid carrying the aspartokinase II gene into an auxotrophic Escherichia coli strain lacking all three aspartokinases restored its ability to grow in the absence of L-lysine, L-threonine, and L-methionine. The B. subtilis aspartokinase gene could thus be functionally expressed in E. coli and substitute for the E. coli aspartokinases. Measurement of aspartokinase levels in extracts of aspartokinaseless E. coli transformed with the B. subtilis aspartokinase II gene revealed an enzyme level comparable to that in a genetically derepressed B. subtilis strain. In spite of the high level of aspartokinase, the growth of the transformed E. coli strain was severely inhibited by the addition of L-lysine but could be restored by also adding L-homoserine. This apparently paradoxical sensitivity to lysine was due to the allosteric inhibition of B. subtilis aspartokinase II by that amino acid, a property which was also observed in extracts of the transformed E. coli strain. The synthesis and degradation of the aspartokinase II subunits were measured by labeling experiments in E. coli transformed with the B. subtilis aspartokinase II gene. In contrast to exponentially growing cells of B. subtilis which contained equimolar amounts of the aspartokinase alpha and beta subunits, the transformed E. coli strain contained a 3-fold molar excess of beta subunit. Pulse-chase experiments showed that the disproportionate level of beta subunit was not due to more rapid turnover of alpha subunit, both subunits being quite stable, but presumably to a more rapid rate of synthesis. After the addition of rifampicin, the synthesis of alpha subunit declined much more rapidly than that of beta subunit, indicating that the two subunits were translated independently from mRNA species that differ in functional stability. In conjunction with the results described in the preceding paper which demonstrated that the aspartokinase subunits are encoded by a single DNA sequence, these observations imply that the alpha and beta subunits of B. subtilis aspartokinase II are the products of in-phase overlapping genes.  相似文献   

14.
We report characterization of the component proteins and molecular cloning of the genes encoding the two subunits of the carboxyltransferase component of the Escherichia coli acetyl-CoA carboxylase. Peptide mapping of the purified enzyme component indicates that the carboxyltransferase component is a complex of two nonidentical subunits, a 35-kDa alpha subunit and a 33-kDa beta subunit. The alpha subunit gene encodes a protein of 319 residues and is located immediately downstream of the polC gene (min 4.3 of the E. coli genetic map). The deduced amino acid composition, molecular mass, and amino acid sequence match those determined for the purified alpha subunit. Six sequenced internal peptides also match the deduced sequence. The amino-terminal sequence of the beta subunit was found within a previously identified open reading frame of unknown function called dedB and usg (min 50 of the E. coli genetic map) which encodes a protein of 304 residues. Comparative peptide mapping also indicates that the dedB/usg gene encodes the beta subunit. Moreover, the deduced molecular mass and amino acid composition of the dedB/usg-encoded protein closely match those determined for the beta subunit. The deduced amino acid sequences of alpha and beta subunits show marked sequence similarities to the COOH-terminal half and the NH2-terminal halves, respectively, of the rat propionyl-CoA carboxylase, a biotin-dependent carboxylase that catalyzes a similar carboxyltransferase reaction reaction. Several conserved regions which may function as CoA-binding sites are noted.  相似文献   

15.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

16.
The E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex from the yeast Saccharomyces cerevisiae were purified. Antibodies raised against these subunits were used to clone the corresponding genes from a genomic yeast DNA library in the expression vector lambda gt11. The gene encoding the E1 alpha subunit was unique and localized on a 1.7-kb HindIII fragment from chromosome V. The identify of the gene was confirmed in two ways. (a) Expression of the gene in Escherichia coli produced a protein that reacted with the anti-E1 alpha serum. (b) Gene replacement at the 1.7-kb HindIII fragment abolished both pyruvate dehydrogenase activity and the production of proteins reacting with anti-E1 alpha serum in haploid cells. In addition, the 1.7-kb HindIII fragment hybridized to a set of oligonucleotides derived from amino acid sequences from the N-terminal and central regions of the human E1 alpha peptide. We propose to call the gene encoding the E1 alpha subunit of the yeast pyruvate dehydrogenase complex PDA1. Screening of the lambda gt11 library using the anti-E1 beta serum resulted in the reisolation of the RAP1 gene, which was located on chromosome XIV.  相似文献   

17.
Amino acid sequence comparison of 8 alpha and 6 beta subunits of the alpha-keto acid dehydrogenase (E1) component of the pyruvate dehydrogenase complex and branched-chain alpha-keto acid dehydrogenase complex form multiple species was performed by computer analysis. In addition to 2 previously recognized regions of homology in the alpha subunit, a 3rd region of extensive homology was identified in E1 alpha, and may be one of the sites involved in subunit interaction. E1 beta contains 4 regions of extensive homology. Region 1 contains 10 amino acids that are homologous to a 10-amino acid stretch in Escherichia coli E1. Regions 2 and 3 have sequence homologies with other dehydrogenases suggesting that these regions may be involved in catalysis.  相似文献   

18.
A cDNA encoding subunit C of the V-ATPase from bovine chromaffin granules was cloned and sequenced. The gene encodes a hydrophilic protein of 382 amino acids with a calculated molecular weight of 43,989. Hydropathy plots revealed no apparent transmembrane segments and a rather high helix content was detected. A cDNA encoding most of the C subunit of the V-ATPase of human brain was also cloned and sequenced. The deduced amino acid sequence of this gene is almost identical to the bovine polypeptide with only one change of tyrosine 336 that was replaced by histidine in the human gene. Two polypeptide fragments derived from subunit E of V-ATPase from chromaffin granules were sequenced and found to be identical to the predicted amino acid sequence of this subunit from bovine kidney. These observations support the idea that the amino acid sequences of corresponding subunits from different V-ATPases are highly conserved. Unlike the A and B subunits of V-ATPases, that are homologous to the beta and alpha subunits of F-ATPases, subunits C and E showed no homology with analogous subunits of the F-ATPase family. It is proposed that the addition of the C and gamma subunits to the respective V- and F-ATPases during evolution defined them as two separate families of H(+)-ATPases.  相似文献   

19.
20.
MAT II, the extrahepatic form of methionine adenosyltransferase (MAT), consists of catalytic alpha(2)/alpha(2') subunits and a noncatalytic beta subunit, believed to have a regulatory function. The full-length cDNA that encodes the beta subunit of human MAT II was cloned and found to encode for a 334-amino acid protein with a calculated molecular weight of 37,552. Analysis of sequence homology showed similarity with bacterial enzymes that catalyze the reduction of TDP-linked sugars. The beta subunit cDNA was cloned into the pQE-30 expression vector, and the recombinant His tagged protein, which was expressed in Escherichia coli, was recognized by antibodies to the human MAT II, to synthetic peptides copying the sequence of native beta subunit protein, and to the rbeta protein. There is no cross-reactivity between the MAT II alpha(2) or beta subunits. None of the anti-beta subunit antibodies reacted with protein extracts of E. coli host cells, suggesting that these bacteria have no beta subunit protein. Interestingly, the rbeta subunit associated with E. coli as well as human MAT alpha subunits. This association changed the kinetic properties of both enzymes and lowered the K(m) of MAT for L-methionine. Together, the data show that we have cloned and expressed the human MAT II beta subunit and confirmed its long suspected regulatory function. This knowledge affords a molecular means by which MAT activity and consequently the levels of AdoMet may be modulated in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号