首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

2.
Methyl[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosid]onat e was used for the glycosylation of benzyl O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)- and benzyl O-(2,3-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl- 2-O-pivaloyl-beta-D-glucopyranoside to give benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2-- --3)-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(21) and benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2----6) -O-(2,3-di- O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl-2-O-pivaloyl- beta-D-glucopyranoside (18), respectively, accompanied by the beta-linked isomers 22 and 19, respectively. Compounds 18, 21, and 22 were converted into the corresponding glycotriosyl donors which, upon coupling with (2S,3R,4E)-3-O-benzoyl-2-N-tetracosanoylsphingenine, afforded completely protected ganglioside analogs 39, 40, and 41, respectively. Deprotection of 40, 41, and 39 completed the synthesis of the modified ganglioside de-N-acetyl-GM3, a stereoisomer, and a regioisomer. The N-deprotected forms of 40 and 39, on successive treatment with methyl isocyanate and O-deprotection, gave the N-(N-methylcarbamoyl) analogs of GM3 and its regioisomer.  相似文献   

3.
D-Galactose was converted into the glycosylating agents 4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alpha-D-glucopyranosyl chloride (11) and the methyl beta-D-thiopyranoside 19. Condensation of 11 with 2,5-diazido-1,6-di-O-benzoyl-2,5-di-deoxy-L-iditol in the presence of mercury salts gave 24% of 2,5-diazido-3-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-1,6-di-O-benzoyl-2,5-dideoxy-L-iditol. Methyl trifluoromethanesulfonate-promoted glycosylation of 1,3-diazido-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulit ol with 19 in the presence of 2,6-di-tert-butyl-4-methylpyridine gave 1,3-diazido-4-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulitol (42), whereas, in the absence of base, migration of the O-isopropylidene group occurred, affording 1,3-diazido-6-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-4,5-O-isopropylidene-D-gulitol in addition to 42.  相似文献   

4.
Condensation of known benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,6-tri-O-benzyl-beta-D- galactopyranosyl)-alpha-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl chloride in dichloromethane in the presence of 2,4,6-trimethylpyridine, silver triflate, and molecular sieve 4A gave benzyl O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1 leads to 4)-O-(2,3,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 leads to 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-glucopyranoside. Catalytic hydrogenolysis gave crystalline O-alpha-D-galactopyranosyl-(1 leads to 4)-O-beta-D-galactopyranosyl-(1 leads to 4)-2-acetamido-2-deoxy-alpha -D-glucopyranose, the human blood-group P1-antigenic determinant. A similar sequence of reactions was performed starting from allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, in order to prepare a derivative of this determinant suitable for linkage to carrier molecules.  相似文献   

5.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

6.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

7.
4-Methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranoside (22), a building block for the alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap fragment of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----X)-D- RibOH-(5-P----]n (6A, X = 3; 6B, X = 4) has been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside was coupled with 4-methoxybenzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside in ether, using methyl triflate as promoter. The resulting alpha-D-Glcp-(1----3)-alpha-L-Rhap derivative was deallylated with KOBut in N,N-dimethylformamide followed by 0.1M HCl in 9:1 acetone-water. The product was coupled with 3,4,6-tri-O-acetyl-2-O-allyl-alpha,beta-D-galactopyranosyl trichloroacetimidate in ether, using trimethylsilyl triflate, to yield 19. Deacetylation, benzylation, and deallylation then gave 22.  相似文献   

8.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

9.
Condensation of 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide with benzyl 2-acetamido-3,6-di-O-benzyl-alpha-D-glucopyranoside in dichloromethane-N,N-dimethylformamide, in the presence of tetraethylammonium bromide, diisopropylethylamine, and molecular sieve (halide ion-catalyzed reaction), gave benzyl 2-acetamido-3,6-di-O-benzyl-2 deoxy-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-glucopyranoside in crystalline form in 82% yield. Hydrogenolysis of the benzyl groups gave the title disaccharide, in crystalline form in 90% yield, which was characterized by a crystalline peracetylated alpha-D derivative.  相似文献   

10.
The tetrasaccharide a-D-Glcp-(1----4)-a-D-Xylp-(1----4)-a-D-Xylp-(1----4)-D- Glcp (1) has been synthesized, as a substrate analogue of alpha amylase, by silver perchlorate-catalyzed glycosylation of benzyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-a-D-xylopyranosyl)-beta-D- glucopyranoside (30) with 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D- glucopyranosyl)-a-D-xylopyranosyl chloride or by methyl triflate-promoted condensation of 30 with methyl 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl)-1-thio- beta-D-xylopyranoside, followed by removal of protecting groups of the resulting tetrasaccharide derivative 40.  相似文献   

11.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Regioselective monoacetylation of 2-allyloxycarbonylamino-1,6-anhydro-2-deoxy-beta-D-glucopyranose (1) gave a mixture of 3-O-acetyl and 4-O-acetyl derivatives, the structures of which were established by two-dimensional, phase-sensitive NOESY and confirmed by chemical proofs. The benzylation of 1, on the other hand, led to 2-allyloxycarbonylamino-1,6-anhydro-3,4-di- (5) or 2-allyloxycarbonylamino-1,6-anhydro-2-N-benzyl-3,4-di-O-benzyl-2-d eoxy-beta-D- glucopyranose (10). The regioselective cleavage of 5 with titanium tetrachloride gave the expected 3-O-benzyl derivative, the structure of which was ascertained by chemical proofs; the same reaction performed on 10 led to the opening of the anhydro ring to afford 3-benzyl-[3,4-di-O-benzyl-1,2-dideoxy-alpha-D-glucopyrano]-[2,1-d] -2- oxazolidone.  相似文献   

13.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

14.
A chitobiose derivative, methyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-3,6 - di-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside, was derived from the corresponding N-acetyl derivative and this was converted into the glycosyl bromide (5). Glycosidation reaction between 5 and methyl 3,4,6-tri-O-benzyl-alpha-D-mannopyranoside in the presence of silver trifluoromethanesulfonate gave a beta-D-linked trisaccharide derivative. Replacement of the N,N-phthaloyl group by acetyl groups resulted in a product that was converted into methyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-O -(2- acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----2)-3,4,6- tri-O- benzyl-alpha-D-mannopyranoside (11) by use of a few reaction steps. The 4(3)-hydroxyl group of 11 was methanesulfonylated, and the product subjected to SN2 replacement with acetate anion, to give the D-galactosamine-containing trisaccharide derivative (12). After basic hydrolysis of 12, the 4(3)-hydroxyl group was sulfated, and all benzyl groups were removed by hydrogenolysis, giving methyl O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-(1----4)-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----2)-alpha-D-mannopyranosid e monosodium salt, the methyl alpha-glycoside derivative of the peripheral trisaccharide sequence of the pituitary glycoprotein hormone lutropin.  相似文献   

15.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

16.
The "heptasaccharides" O-alpha-D-galactopyranosyl-(1----3)- O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----3)-D-ribit-5-yl sodium phosphate] (25) and O-alpha-D-galactopyranosyl- (1----3)-O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----4)-D-ribit-5-yl sodium phosphate] (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)- -alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)-D-RibOH-(5-P----]n; 6A X = 3, 6B X = 4), respectively, have been synthesized. 2,4-Di-O-acetyl- 3-O-[2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranosyl trichloroacetimidate (13) was coupled with 5-O-allyloxycarbonyl-1,2,4-tri-O- benzyl-D-ribitol (10), using trimethylsilyl triflate as a promotor (----14), and deallyloxycarbonylation (----15) and conversion into the corresponding triethylammonium phosphonate then gave 16. Condensation of 16 with 4-methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]- alpha-L-rhamnopyranoside (22) followed by oxidation and deprotection afforded 25. 5-O-Allyl-1-O-allyloxycarbonyl-2,3-di-O-benzyl-D-ribitol (12) was coupled with 13, using trimethylsilyl triflate as a promoter, the resulting tetrasaccharide-alditol derivative 17 was deallyloxycarbonylated (----18), acetylated (----19), and deallylated (----20), and the product was converted into the triethylammonium phosphonate derivative 21. Condensation of 21 with 22 followed by oxidation and deprotection afforded 27.  相似文献   

17.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

18.
tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was readily transformed into the disaccharide glycosyl donor, 3,4,6-tri-O-acetyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-alpha/beta-D-glucopyranosyl trichloroacetimidate, and the disaccharide glycosyl acceptor, tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside. A TMSOTf-catalysed coupling of the acceptor with the donor afforded the respective tetrasaccharide derivative, which can be transformed to chitotetraose. tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was converted into donor 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl trichloroacetimidate. Its coupling with benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, followed by dephenoxyacetylation, gave benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, whose glycosylation furnished, after replacement of the DMM-group by the acetyl moiety and subsequent deprotection, chitohexaose.  相似文献   

19.
1,2,3,2',3',4',6'-Hepta-O-acetyl-beta-lactose (4) was coupled with 2,3,6,2',3',4',6'-hepta-O-acetyl-alpha-lactosyl bromide (7) in the presence of Hg(CN)2 to afford 1,2,3,2',3',4',6'-hepta-O-acetyl-6-O-(2,3,6,2',3',4',6'-hepta-O-acetyl-b eta- lactosyl)-beta-lactose (11) which, upon O-deacetylation, gave 6-O-beta-lactosyl-alpha,beta-lactoses (64% from 4). In contrast, the reaction of 7 with benzyl 2,3,2',3',4',6'-hexa-O-acetyl-beta-lactoside in the presence of Hg(CN)2 produced 3,6,2',3',4',6'-hexa-O-acetyl-1,2-O- (2,3,2',3',4',6'-hexa-O-acetyl-1-O-benzyl-beta-lactos-6-yl orthoacetyl)-alpha-lactose (63%) and 3,6,2',3',4',6'-hexa-O-acetyl-1,2-O-(1- cyanoethylidene)-alpha-lactose (27%). The glycosidation of 4 using 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide in the presence of Hg(CN)2 afforded, after deprotection, 4,6-di-O-beta-D-galactopyranosyl-alpha,beta-D-glucoses (66%). The reaction of 11 with 1,2-di-O-benzyl-(R,S)-glycerols and trimethylsilyl trifluoromethanesulfonate yielded, after deprotection, 1-O-(6-O-beta-lactosyl-beta-lactosyl)-(R,S)-glycerols (18%). Under the same coupling conditions 11 reacted with 2-O-benzylglycerol to form 3-O-acetyl-2-O-benzyl-1-O-[2',3',4',6'-hexa-O-acetyl-6-O-(2,3,6,2',3',4' ,6'- hepta-O-acetyl-beta-lactosyl)-beta-lactosyl]-(R,S)-glycerols (16%).  相似文献   

20.
Starting from L-rhamnose, D-mannose and 2-amino-2-deoxy-D-glucose hydrochloride, two disaccharide blocks, namely, ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamnopyranos yl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-1-thio-alpha-D-mannopyranoside and 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-benzy l-2-deoxy-2-phthalimido-beta-D-glucopyranoside, were synthesised and then allowed to react in the presence of N-iodosuccinimide and trifluoromethane sulfonic acid to give a tetrasaccharide derivative. This compound was converted into 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamno- pyranosyl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-- >4)-2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-2-acetamid o-4,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, which on hydrogenolysis, afforded the methyl ester 2-(trimethylsilyl)ethyl glycoside of the tetrasaccharide related to the repeating unit of the O-antigen from Shigella dysenteriae type 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号