首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

2.
3.
A pentapeptide-based method for protein secondary structure prediction   总被引:7,自引:0,他引:7  
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis.  相似文献   

4.
Pan XM 《Proteins》2001,43(3):256-259
In the present work, a novel method was proposed for prediction of secondary structure. Over a database of 396 proteins (CB396) with a three-state-defining secondary structure, this method with jackknife procedure achieved an accuracy of 68.8% and SOV score of 71.4% using single sequence and an accuracy of 73.7% and SOV score of 77.3% using multiple sequence alignments. Combination of this method with DSC, PHD, PREDATOR, and NNSSP gives Q3 = 76.2% and SOV = 79.8%.  相似文献   

5.
GOR V server for protein secondary structure prediction   总被引:3,自引:0,他引:3  
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server.  相似文献   

6.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained.  相似文献   

7.
A segment-based approach to protein secondary structure prediction.   总被引:4,自引:0,他引:4  
Amino acid sequence patterns have been used to identify the location of turns in globular proteins [Cohen et al. (1986) Biochemistry 25, 266-275]. We have developed sequence patterns that facilitate the prediction of helices in all helical proteins. Regular expression patterns recognize the component parts of a helix: the amino terminus (N-cap), the core of the helix (core), and the carboxy terminus (C-cap). These patterns recognize the core features of helices with a 95% success rate and the N- and C-capping features with success rates of 56% and 48%, respectively. A metapattern language, ALPPS, coordinates the recognition of turns and helical components in a scheme that predicts the location and extent of alpha-helices. On the basis of raw residue scoring, a 71% success rate is observed. By focusing on the recognition of core helical features, we achieve a 78% success rate. Amended scoring procedures are presented and discussed, and comparisons are made to other predictive schemes.  相似文献   

8.
An algorithm has been developed to improve the success rate in the prediction of the secondary structure of proteins by taking into account the predicted class of the proteins. This method has been called the 'double prediction method' and consists of a first prediction of the secondary structure from a new algorithm which uses parameters of the type described by Chou and Fasman, and the prediction of the class of the proteins from their amino acid composition. These two independent predictions allow one to optimize the parameters calculated over the secondary structure database to provide the final prediction of secondary structure. This method has been tested on 59 proteins in the database (i.e. 10,322 residues) and yields 72% success in class prediction, 61.3% of residues correctly predicted for three states (helix, sheet and coil) and a good agreement between observed and predicted contents in secondary structure.  相似文献   

9.
Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy.  相似文献   

10.
PHD-an automatic mail server for protein secondary structure prediction   总被引:30,自引:0,他引:30  
By the middle of 1993, >30 000 protein sequences had beenlisted. For 1000 of these, the three-dimensional (tertiary)structure has been experimentally solved. Another 7000 can bemodelled by homology. For the remaining 21 000 sequences, secondarystructure prediction provides a rough estimate of structuralfeatures. Predictions in three states range between 35% (random)and 88% (homology modelling) overall accuracy. Using informationabout evolutionary conservation as contained in multiple sequencealignments, the secondary structure of 4700 protein sequenceswas predicted by the automatic e-mail server PHD. For proteinswith at least one known homologue, the method has an expectedoverall three-state accuracy of 71.4% for proteins with at leastone known homologue (e on 126 unique protein chains).  相似文献   

11.
This paper presents a novel algorithm for the discovery of biological sequence motifs. Our motivation is the prediction of gene function. We seek to discover motifs and combinations of motifs in the secondary structure of proteins for application to the understanding and prediction of functional classes. The motifs found by our algorithm allow both flexible length structural elements and flexible length gaps and can be of arbitrary length. The algorithm is based on neither top-down nor bottom-up search, but rather is dichotomic. It is also "anytime," so that fixed termination of the search is not necessary. We have applied our algorithm to yeast sequence data to discover rules predicting function classes from secondary structure. These resultant rules are informative, consistent with known biology, and a contribution to scientific knowledge. Surprisingly, the rules also demonstrate that secondary structure prediction algorithms are effective for membrane proteins and suggest that the association between secondary structure and function is stronger in membrane proteins than globular ones. We demonstrate that our algorithm can successfully predict gene function directly from predicted secondary structure; e.g., we correctly predict the gene YGL124c to be involved in the functional class "cytoplasmic and nuclear degradation." Datasets and detailed results (generated motifs, rules, evaluation on test dataset, and predictions on unknown dataset) are available at www.aber.ac.uk/compsci/Research/bio/dss/yeast.ss.mips/, and www.genepredictions.org.  相似文献   

12.
目前评价蛋白质二级结构预测方法主要考虑预测准确率,并没有充分考虑方法自身参数对方法的影响。本文提出一种新型评价方法,将内在评价与外在评价相结合评价预测方法的优劣。以基于混合并行遗传算法的蛋白质二级结构预测方法为例,通过内在评价,合理选取内在参数——切片长度和组内类别数,有效提高预测准确率,同时,通过外在评价,与其他基于随机算法的蛋白质二级结构预测算法比较和与CASP所提供的结论比较,说明了方法的有效性与正确性,以此验证内在评价和外在评价的客观性、公正性和全面性。  相似文献   

13.
目前蛋白质二级结构的预测准确率徘徊在75%左右,难以作进一步提高。本文通过统计学的方法,对蛋白质的冗余数据库进行了分析。并由此证明,目前影响预测准确率继续的真正原因是蛋白质数据库本身的系统误差,系统误差大约为25%。而该误差是由于实验条件的客观原因带来的。  相似文献   

14.
Most recent protein secondary structure prediction methods use sequence alignments to improve the prediction quality. We investigate the relationship between the location of secondary structural elements, gaps, and variable residue positions in multiple sequence alignments. We further investigate how these relationships compare with those found in structurally aligned protein families. We show how such associations may be used to improve the quality of prediction of the secondary structure elements, using the Quadratic-Logistic method with profiles. Furthermore, we analyze the extent to which the number of homologous sequences influences the quality of prediction. The analysis of variable residue positions shows that surprisingly, helical regions exhibit greater variability than do coil regions, which are generally thought to be the most common secondary structure elements in loops. However, the correlation between variability and the presence of helices does not significantly improve prediction quality. Gaps are a distinct signal for coil regions. Increasing the coil propensity for those residues occurring in gap regions enhances the overall prediction quality. Prediction accuracy increases initially with the number of homologues, but changes negligibly as the number of homologues exceeds about 14. The alignment quality affects the prediction more than other factors, hence a careful selection and alignment of even a small number of homologues can lead to significant improvements in prediction accuracy.  相似文献   

15.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler.  相似文献   

16.
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.  相似文献   

17.
MOTIVATION: Protein secondary structure prediction is an important step towards understanding how proteins fold in three dimensions. Recent analysis by information theory indicates that the correlation between neighboring secondary structures are much stronger than that of neighboring amino acids. In this article, we focus on the combination problem for sequences, i.e. combining the scores or assignments from single or multiple prediction systems under the constraint of a whole sequence, as a target for improvement in protein secondary structure prediction. RESULTS: We apply several graphical chain models to solve the combination problem and show that they are consistently more effective than the traditional window-based methods. In particular, conditional random fields (CRFs) moderately improve the predictions for helices and, more importantly, for beta sheets, which are the major bottleneck for protein secondary structure prediction.  相似文献   

18.
Machine learning approach for the prediction of protein secondary structure   总被引:8,自引:0,他引:8  
PROMIS (protein machine induction system), a program for machine learning, was used to generalize rules that characterize the relationship between primary and secondary structure in globular proteins. These rules can be used to predict an unknown secondary structure from a known primary structure. The symbolic induction method used by PROMIS was specifically designed to produce rules that are meaningful in terms of chemical properties of the residues. The rules found were compared with existing knowledge of protein structure: some features of the rules were already recognized (e.g. amphipathic nature of alpha-helices). Other features are not understood, and are under investigation. The rules produced a prediction accuracy for three states (alpha-helix, beta-strand and coil) of 60% for all proteins, 73% for proteins of known alpha domain type, 62% for proteins of known beta domain type and 59% for proteins of known alpha/beta domain type. We conclude that machine learning is a useful tool in the examination of the large databases generated in molecular biology.  相似文献   

19.
Computational methods are rapidly gaining importance in the field of structural biology, mostly due to the explosive progress in genome sequencing projects and the large disparity between the number of sequences and the number of structures. There has been an exponential growth in the number of available protein sequences and a slower growth in the number of structures. There is therefore an urgent need to develop computational methods to predict structures and identify their functions from the sequence. Developing methods that will satisfy these needs both efficiently and accurately is of paramount importance for advances in many biomedical fields, including drug development and discovery of biomarkers. A novel method called fast learning optimized prediction methodology (FLOPRED) is proposed for predicting protein secondary structure, using knowledge-based potentials combined with structure information from the CATH database. A neural network-based extreme learning machine (ELM) and advanced particle swarm optimization (PSO) are used with this data that yield better and faster convergence to produce more accurate results. Protein secondary structures are predicted reliably, more efficiently and more accurately using FLOPRED. These techniques yield superior classification of secondary structure elements, with a training accuracy ranging between 83?% and 87?% over a widerange of hidden neurons and a cross-validated testing accuracy ranging between 81?% and 84?% and a segment overlap (SOV) score of 78?% that are obtained with different sets of proteins. These results are comparable to other recently published studies, but are obtained with greater efficiencies, in terms of time and cost.  相似文献   

20.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号