首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin and calmodulin-mediated processes in plants   总被引:11,自引:3,他引:8  
Abstract. The Ca2+ -binding protein calmodulin is found in all plants investigated so far. The comparison of the biochemical and functional properties reveals that it is structurally conserved and functionally preserved throughout the plant and animal kingdom. Among the plant enzymes so far known to be dependent on the Ca2+ -calmodulin complex are NAD kinase(s), Ca2+ -transport ATPase, quinate: NAD+ oxidoreductase, soluble and membrane bound protein kinases, and H+ -transport ATPase. Calmodulin may play also an important role in the regulation of other cellular reactions, such as hormone-mediated processes, secretion of enzymes, and contractile mechanisms. On the basis of the NAD kinase and its regulation by light and Ca2+ -calmodulin, it is suggested that changes in the cellular, free Ca2+ concentration following stimulation may alter the metabolism of a plant cell. According to this suggestion free Ca2+ may act as a second messenger in plants much as it does in animal cells.  相似文献   

2.
The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.  相似文献   

3.
Calmodulin-dependent NAD kinase of human neutrophils   总被引:1,自引:0,他引:1  
NAD kinase from human neutrophils has been partially purified by sequential application of Red Agarose, ion-exchange, and gel-filtration chromatography. The enzyme has a broad pH optimum, 7.0-9.5, is strictly dependent upon the presence of Mg2+, and in the absence of calcium exhibits Km values of 0.6 and 0.9 mM for NAD and ATP, respectively. NAD kinase activity is extremely sensitive to free calcium concentration, with half-maximal activity observed at free calcium concentrations of approximately 0.4 microM. In cellular extracts calcium-dependent activation of NAD kinase increases the maximum velocity of the reaction from 2- to 5-fold while not affecting Km values for NAD and ATP. The activity of the partially purified NAD kinase is stimulated 3.5-fold by the addition of calmodulin in the presence of calcium. This stimulation is inhibited by the addition of 20 microM trifluoperazine to the incubation. These data are interpreted as implicating calmodulin in NAD kinase regulation. The total concentration of NADP + NADPH in the human neutrophil used increased 2.2-fold in response to activation by phorbol myristic acetate. Finally, neutrophil NAD kinase has a Mr, based upon gel filtration, of 169,000.  相似文献   

4.
Exit from M phase, which requires cyclin degradation, is prevented from occurring in unfertilized eggs of vertebrates arrested at second meiotic metaphase due to a cytostatic factor recently identified as p39mos, the product of the proto-oncogene c-mos. Calpain can destroy both p39mos and cyclin in vitro in extracts prepared from metaphase-arrested Xenopus eggs, but only when free Ca2+ concentration is raised to the millimolar range. When free Ca2+ concentration is raised for only 30 s to the micromolar range, as occurs in physiological conditions after fertilization, cyclin degradation is induced, byt p39mos is not degraded. Cyclin proteolysis at micromolar free Ca2+, is not inhibited by calpastatin, and therefore does not involve calpain. A cyclin mutant modified in the destruction box is found to be resistant at micromolar, but not millimolar free Ca2+, suggesting that the ubiquitin pathway mediates cyclin degradation at micromolar Ca2+ concentration whereas calpain is involved at the millimolar level. A synthetic peptide which binds Ca(2+)-calmodulin with high affinity suppresses cyclin degradation at micromolar but not millimolar free Ca2+, and this only when it is present in the extract during the first 30 s after raising free Ca2+ concentration. The inhibition of the cyclin degradation pathway by the Ca(2+)-calmodulin binding peptide can be overcome by adding calmodulin. These results strongly suggest that a Ca(2+)-calmodulin process is required as an early event following fertilization to release the cyclin degradation pathway from inhibition in metaphase-arrested eggs. In contrast, p39mos degradation is not required.  相似文献   

5.
It was demonstrated that under normal conditions calmodulin and exogenous 3':5'-AMP-dependent protein kinase considerably active Ca2+ transport by sarcoplasmic reticulum of rabbit myocardium; a combined action of these compounds produces an additive effect. The protein-inhibitor of 3':5'-AMP-dependent protein kinase and trifluoroperazine eliminate the activating effect of 3':5'-AMP-dependent protein kinase; in addition, trifluoroperazine decreases significantly the basal level of Ca2+ uptake. The 3':5'-AMP-dependent activation of Ca2+ transport becomes apparent after Ca2+-calmodulin-dependent phosphorylation of FSR membrane proteins. In toxico-allergic myocarditis calmodulin and 3':5'-AMP-dependent protein kinase do not activate the low level of Ca2+ uptake. No differences were observed between the action of calmodulin and 3':5'-AMP-dependent protein kinase isolated from normal and pathological rabbit heart. A conclusion is drawn that the decrease of Ca2+ transport is due to the impairment of Ca2+-calmodulin and 3':5'-AMP-dependent phosphorylation in sarcoplasmic reticulum membranes.  相似文献   

6.
Measurement of the volume change by a rapid density method upon sequential addition of calcium ion to calmodulin showed relatively large, nonuniform increases for the first 4 moles Ca2+ per mole calmodulin. Substantially larger volume increases (approximately 15 ml/mol protein) were observed upon addition of the second and fourth moles Ca2+ relative to the first and third moles added per mole calmodulin. A total volume increase of approximately 170 ml/mol protein attended the addition of 4 moles Ca2+, as expected for multidentate carboxylate coordination to metal ion. Marginal changes in volume were observed upon further additions, the data showing a remarkably sharp transition after [Ca2+]/[calmodulin] = 4. The results are consistent with an ordered binding of Ca2+ in which pair-wise additions produce similar volume changes; the volume change behavior, however, does not indicate an absence of distinct conformational states for a Ca2+(1)-calmodulin and a Ca2+(3)-calmodulin complex as has been proposed on the basis of 1H-NMR evidences.  相似文献   

7.
The kinesin-like calmodulin binding protein (KCBP) is a new member of the kinesin superfamily that appears to be present only in plants. The KCBP is unique in its ability to interact with calmodulin in a Ca2+-dependent manner. To study the interaction of the KCBP with microtubules, we expressed different regions of the Arabidopsis KCBP and used the purified proteins in cosedimentation assays with microtubules. The motor domain with or without the calmodulin binding domain bound to microtubules. The binding of the motor domain containing the calmodulin binding region to microtubules was inhibited by Ca2+-calmodulin. This Ca2+-calmodulin regulation of motor domain interactions with microtubules was abolished in the presence of antibodies specific to the calmodulin binding region. In addition, the binding of the motor domain lacking the calmodulin binding region to microtubules was not inhibited in the presence of Ca2+-calmodulin, suggesting an essential role for the calmodulin binding region in Ca2+-calmodulin modulation. Results of the cosedimentation assays with the N-terminal tail suggest the presence of a second microtubule binding site on the KCBP. However, the interaction of the N-terminal tail region of the KCBP with microtubules was insensitive to ATP. These data on the interaction of the KCBP with microtubules provide new insights into the functioning of the KCBP in plants.  相似文献   

8.
Dehydrouramil hydrate hydrochloride (DHU), a stable analogue of alloxan, inhibited the phosphorylation of an endogenous protein of Mr 53,000 catalysed by a Ca2+-calmodulin-dependent protein kinase in extracts of islets of Langerhans. The concentration of DHU required for 50% inhibition was 0.09 mM. DHU did not inhibit islet cyclic AMP-dependent protein kinase and caused only slight inhibition of Ca2+-phospholipid-dependent protein kinase. Inhibition of Ca2+-calmodulin-dependent protein kinase was neither prevented nor reversed by dithiothreitol. DHU did not affect the ability of calmodulin to activate cyclic AMP phosphodiesterase. In intact islets, pre-exposure to DHU impaired the insulin-secretory response to glucose and blocked the potentiatory effect on insulin secretion of forskolin, an activator of adenylate cyclase, and of tetradecanoylphorbol acetate (TPA), an activator of Ca2+-phospholipid-dependent protein kinase. The increase in islet cyclic AMP elicited by forskolin was not affected by DHU. The data are consistent with the hypothesis that protein phosphorylation catalysed by a Ca2+-calmodulin-dependent protein kinase may play a central role in the regulation of insulin secretion.  相似文献   

9.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In a cytosolic fraction derived from insulin-secreting RINm5F cells, the rate of conversion of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) was half-maximally stimulated by 0.8 microM Ca2+ (Biden, T. J., and Wollheim, C. B. (1986) J. Biol. Chem. 261, 11931-11934). In the present study we show that after initial purification by anion exchange chromatography, the Ins-1,4,5-P3 kinase activity responsible for that conversion is stimulated by Ca2+-calmodulin, but not by Ca2+ alone. This is almost certainly due to a specific interaction of the enzyme and its activator since kinase activity was retained on a calmodulin-linked Sepharose 6B column in the presence of Ca2+ but eluted upon chelation of the cation. After this two-step purification, Ins-1,4,5-P3 kinase activity was maximally stimulated 5-fold by 10 microM calmodulin in the presence of 10(-5) M Ca2+, and 2 1/2-fold at 10(-6) M Ca2+. Under these conditions the minimum concentrations of calmodulin needed to stimulate activity were in the 10-50 nM range. At 10(-7) M Ca2+, calmodulin (up to 30 microM) was without effect. Stimulated Ins-1,4,5-P3 kinase activity was inhibited in a dose-dependent fashion by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) although the calmodulin antagonist had no effect on the residual activity seen at 10(-7) M Ca2+. These results strongly support our previous suggestion that alterations in cytosolic free Ca2+ concentrations play an important role in regulating the levels of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 during cellular stimulation.  相似文献   

11.
Endogenous synaptic vesicle alpha- and beta-tubulin were shown to be the major substrates for a Ca2+-calmodulin-regulated protein kinase system in enriched synaptic vesicle preparations from rat cortex as determined by two-dimensional gel electrophoresis and peptide mapping. The activation of this endogenous tubulin kinase system was dependent on Ca2+ and the Ca2+ binding protein, calmodulin. Under maximally stimulated conditions, approximately 40% of the tubulin present in enriched synaptic vesicles was phosphorylated within less than 50 s by the vesicle Ca2+-calmodulin kinase. Evidence is presented indicating that the Ca2+-calmodulin tubulin kinase is an enzyme system distinct from previously described cyclic AMP protein kinases. alpha-Tubulin and beta-tubulin were identified as major components of previously designated vesicle phosphorylation bands DPH-L and DPH-M. The Ca2+-calmodulin tubulin kinase is very labile and specialized isolation procedures were necessary to retain activity. Ca2+-activated synaptic vesicle tubulin phosphorylation correlated with vesicle neurotransmitter release. Depolarization-dependent Ca2+ uptake in intact synaptosomes simultaneously stimulated the release of neurotransmitters and the phosphorylation of synaptic vesicle alpha- and beta-tubulin. The results indicate that regulation of the synaptic vesicle tubulin kinase by Ca2+ and calmodulin may play a role in the functional utilization of synaptic vesicle tubulin and may mediate some of the effects of Ca2+ on vesicle function and neurosecretion.  相似文献   

12.
Hydrophobic regions function in calmodulin-enzyme(s) interactions   总被引:17,自引:0,他引:17  
Certain naturally occurring lipids (phosphatidylinositol, phosphatidylserine, arachidonic acid) and sodium dodecyl sulfate activate at least two calmodulin-dependent enzymes, bovine brain 3':5'-cyclic nucleotide phosphodiesterase and chicken gizzard myosin light chain kinase in the absence of Ca2+. 2-p-Toluidinyl-naphthalene-6-sulfonate (TNS), which is often used as a probe for hydrophobic groups of proteins, inhibits these two calmodulin-dependent enzymes. Kinetic analysis of inhibition of chicken gizzard myosin kinase by TNS revealed a competitive fashion against calmodulin-induced activation. The interaction between TNS and purified bovine brain calmodulin as demonstrated in the appearance of TNS fluorescence in the presence of 3 microM or more of calcium ion was not observed in the presence of 2 mM EGTA. This suggests that TNS is able to bind to calmodulin in the presence of Ca2+. Moreover, a calmodulin-interacting agent N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide suppressed the TNS fluorescence induced by complex formation with calmodulin in the presence of Ca2+. These results suggest that when Ca2+ binds to the high affinity sites of calmodulin, it induces a conformational change which exposes hydrophobic groups, and the calmodulin is then capable of activating calmodulin-dependent enzymes. We propose that hydrophobic properties of Ca2+-calmodulin are important for the activation of Ca2+-calmodulin-dependent enzymes.  相似文献   

13.
NAD kinase activity from dark grown corn coleoptiles is shown to be almost totally dependent on Ca2+ and calmodulin. Nearly all of the enzyme activity is found in a particulate fraction. Upon differential and density gradient centrifugation the NAD kinase activity co-migrates with the mitochondrial cytochrome c oxidase whereas marker activities for nuclei, etioplasts, endoplasmic reticulum, and microbodies could well be separated, indicating that the NAD kinase is associated with mitochondria. This NAD kinase, associated with intact mitochondria, can be activated by exogenously added Ca2+ and calmodulin. In order to investigate the submitochondrial localization of the NAD kinase, the organelles were ruptured by osmotic treatment and sonication and the submitochondrial fractions were separated by density gradient centrifugation. The NAD kinase activity exhibits the same density pattern as the antimycin A-insensitive NADH-dependent cytochrome c reductase, a marker enzyme of the outer mitochondrial membrane. Marker enzymes for the mitochondrial matrix and the inner mitochondrial membrane reveal different density profiles. These results indicate that the Ca2+, calmodulin-dependent NAD kinase from coleoptiles of dark grown corn seedlings is located at the outer mitochondrial membrane. The physiological relevance of the location and the Ca2+, calmodulin-dependence of the NAD kinase will be discussed.  相似文献   

14.
Using stably expressed fluorescent indicator proteins, we have determined for the first time the relationship between the free Ca2+ and Ca2+-calmodulin concentrations in intact cells. A similar relationship is obtained when the free Ca2+ concentration is externally buffered or when it is transiently increased in response to a Ca2+-mobilizing agonist. Below a free Ca2+ concentration of 0.2 microM, no Ca2+-calmodulin is detectable. A global maximum free Ca2+-calmodulin concentration of approximately 45 nM is produced when the free Ca2+ concentration exceeds 3 microM, and a half-maximal concentration is produced at a free Ca2+ concentration of 1 microM. Data for fractional saturation of the indicators suggest that the total concentration of calmodulin-binding proteins is approximately 2-fold higher than the total calmodulin concentration. We conclude that high-affinity calmodulin targets (Kd /= 100 nM) occurs only where free Ca2+-calmodulin concentrations can be locally enhanced.  相似文献   

15.
NAD kinase activity has been found in a soluble, cytoplasmic fraction and in the chloroplasts prepared from green spinach leaves. A small amount of both the cytoplasmic and the chloroplastic NAD kinase activities was retained on a calmodulin-Sepharose affinity column. The cytoplasmic NAD kinase eluted from the affinity column was found to be enhanced by calmodulin in a Ca2+-dependent manner. The chloroplastic enzyme which is located exclusively in the stroma and not in the envelope and thylakoid fractions was not affected by Ca2+ and calmodulin. The stromal fraction of purified chloroplasts contained only a negligible amount of calmodulin, most probably due to cytoplasmic contamination. Based on these data, two different mechanisms for the light-dependent modulation of spinach NAD kinase activity are suggested.  相似文献   

16.
An enzymatic assay for calmodulins based on plant NAD kinase activity   总被引:6,自引:0,他引:6  
NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca2+-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K0.5) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The K0.5's ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K0.5's for the activation of Ca2+-ATPase ranged from 36.3 ng/ml for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca2+. Palmitic acid had a slightly stimulatory effect in the presence of Ca2+ (10% of maximum), but no effect in the absence of Ca2+. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures.  相似文献   

17.
In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.  相似文献   

18.
Measurements of cellular Ca2+-calmodulin concentrations have suggested that competition for limiting calmodulin may couple calmodulin-dependent activities. Here we have directly tested this hypothesis. We have found that in endothelial cells the amount of calmodulin bound to nitric-oxide synthase and the catalytic activity of the enzyme both are increased approximately 3-fold upon changes in the phosphorylation status of the enzyme. Quantitative immunoblotting indicates that the synthase can bind up to 25% of the total cellular calmodulin. Consistent with this, simultaneous determinations of the free Ca2+ and Ca2+-calmodulin concentrations in these cells performed using indo-1 and a fluorescent calmodulin biosensor (Kd = 2 nm) indicate that increased binding of calmodulin to the synthase is associated with substantial reductions in the Ca2+-calmodulin concentrations produced and an increase in the [Ca2+]50 for formation of the calmodulin-biosensor complex. The physiological significance of these effects is confirmed by a corresponding 40% reduction in calmodulin-dependent plasma membrane Ca2+ pump activity. An identical reduction in pump activity is produced by expression of a high affinity (Kd = 0.3 nm) calmodulin biosensor, and treatment to increase calmodulin binding to the synthase then has no further effect. This suggests that the observed reduction in pump activity is due specifically to reduced calmodulin availability. Increases in synthase activity thus appear to be coupled to decreases in the activities of other calmodulin targets through reductions in the size of a limiting pool of available calmodulin. This exemplifies what is likely to be a ubiquitous mechanism for coupling among diverse calmodulin-dependent activities.  相似文献   

19.
Calmodulin was covalently modified with 10-(1-propionyloxysuccinimide)-2-trifluoromethylphenothiazine++ + to stoichiometries between 0 and 2 mol/mol in the presence of Ca2+. The modified calmodulins, oleic acid, and trypsin were assayed for their ability to activate pea plant NAD kinase, bovine brain 3',5'-cAMP phosphodiesterase, and human erythrocyte Ca2+-ATPase. All modified calmodulins activated both phosphodiesterase and Ca2+-ATPase; at the highest concentration assayed, calmodulin modified with 2 mol of reagent/mol activated phosphodiesterase and Ca2+-ATPase to 53% and 100%, respectively, of the activation obtained with unmodified calmodulin. However, higher concentrations of the modified calmodulins were required to observe the same activation; at least 900-fold and 100-fold higher concentrations were required for the two enzymes, respectively. NAD kinase was not activated by any calmodulin labeled to a stoichiometry greater than 1 mol/mol even when a concentration equal to 17,000 times the apparent dissociation constant of calmodulin for NAD kinase was assayed. Therefore, the modified protein (and not some fraction resistant to labeling) is active toward the mammalian enzymes but inactive toward plant NAD kinase. The different response of the three enzymes to the chemical modification suggests that the enzymes may utilize different binding domains on calmodulin. NAD kinase also was not activated by other known activators of the two mammalian enzymes, namely lipids and limited proteolysis. In parallel experiments using the same agents on each enzyme, NAD kinase was the only enzyme of the three that was not activated by oleic acid and several other lipids or by limited trypsin digestion. These results show that NAD kinase possesses several attributes which would not be predicted by current models of the mechanism of activation of enzymes by calmodulin.  相似文献   

20.
Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号