首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aegiceras corniculatum is a cryptoviviparous mangrove tree distributed in the Indo-West Pacific. The genetic structure of 13 populations of A. corniculatum from South China, Malay Peninsula, Sri Lanka, and North Australia, was assessed by amplified fragment length polymorphism (AFLP) markers. Our results showed a relatively high level of genetic variation at the species level (P = 92%, HE = 0.294 and Hs = 0.331 ± 0.001). The value of GST was 0.698, suggesting significant genetic differentiation among populations. At the population level, however, genetic diversity was low (P = 24%, HE = 0.086 and Hs = 0.127 ± 0.001). When populations were grouped according to geographic regions, i.e., South China, Malay Peninsula and Sri Lanka, it was inferred from analysis of molecular variance (AMOVA) that about half the total variation (49%) was accounted for differentiation between regions. A UPGMA dendrogram based on genetic distance also revealed five major clades corresponding to geographical regions within the distribution of A. corniculatum, although the precise relationships among the clades were not fully concordant with expected geographical delineations and need further study.  相似文献   

2.
In order to explain the diversity patterns and develop the conservation strategies, the population genetic structures and the mating systems of Bruguiera gymnorrhiza from the coastlines of south China were investigated in this study. The mating system parameters were analyzed using progeny arrays for allozyme markers. The multilocus outcrossing rates (tm) ranged from 0.845 (Fugong) to 0.267 (Dongzhai harbor). High allozyme variations within the five collected populations were determined and compared with the published data of other plant species with the mixed mating systems. At species level, the percentage of polymorphic loci (P) was 80%, the average number of alleles per locus (A) was 2.440, and the heterozygosity (He) was 0.293. The total gene diversity within each population (HS = 0.2782) and the coefficient of genetic differentiation (GST = 0.0579) among the populations were estimated. On the basis of this population genetic structure, it is suggested that the gene flow (Nm = 3.85) is quite high, which is possibly related to its water-dispersed hypocotyls. It is also suggested that the mating system of this species is of mixed mating.  相似文献   

3.
The genetic diversity and differentiation of eleven R. rosea populations from different parts of its wide area of occurrence were studied by ISSR markers. Using eight primers, 252 DNA fragments were generated, and 243 of those DNA fragments were found to be polymorphic, indicating a high genetic variability at the species level (P = 96.4%, h = 0.176, SI = 0.291). Relatively low levels of diversity were determined at the population level (P 30.6-59.1%, h 0.088-0.165, SI 0.137-0.257). AMOVA analysis revealed that the majority of the genetic variation was within populations (65.42%), and the variance among populations was 34.58%. Cluster analysis revealed two groups of R. rosea populations; these groups likely represent distinct evolutionary lines in the species, which are different in genetic structure, evolutionary history and chorological migration routes.  相似文献   

4.
The effects of habitat fragmentation on the genetic structure of Ambrosina bassii are analyzed. The species, whose reproductive biology is mostly unknown, is the only representative of its genus and tribe and it is endemic to the central Mediterranean area. The selected study area was the island of Sicily, in which wild populations show a wide morphological variability and ecological amplitude. Patterns of within- and among-population genetic diversity in eleven Sicilian populations, occurring in six disjunct areas, were examined by means of allozyme electrophoresis. High levels of genetic diversity were found as shown by the mean expected heterozygosity (He = 0.263), the percentage of polymorphic loci (P95 = 65.3), the mean number of alleles per locus (A = 2.0). Genetic differentiation between populations was relatively low (mean FST = 0.091 and Nm = 1.98). A very weak correlation exists between genetic distances and geographic distances between populations. Despite its restricted and fragmented geographical range, A. bassii showed (i) high levels of genetic diversity, mainly within populations; (ii) no genetic differentiation between populations and morphotypes.  相似文献   

5.
Ottelia alismoides is a threatened submerged macrophyte in China. Genetic variation and population structure of 11 O. alismoides populations from lakes in mid-lower reaches of the Yangtze River were assessed by inter-simple sequence repeat (ISSR) markers. Eleven primer combinations produced a total of 130 unambiguous bands of which 57 (43.9%) were polymorphic. O. alismoides exhibited a very low level of intra-population genetic diversity (Pp = 13.0%, HE = 0.042, I = 0.063). The main factors responsible for that were its short life history and high degree of autogamy in the reproductive system of the species. The F statistics calculated by different approaches consistently revealed a high genetic differentiation among populations, contributing >55% of the total gene diversity. The evident population structure of O. alismoides could be due to self-fertilizing reproduction, restricted gene flow and genetic drift. Estimates of gene flow by FST and coalescent-based simulation analysis indicated a restricted recurrent gene exchange among populations (Nm = 0.180, M = 0.190). Genetic drift played a more important role than gene flow in the current population genetic structure of O. alismoides because its habitat range was fragmented and highly influenced by environment changes. The results are discussed in relation to both in situ and ex situ conservation efforts of the species. A conservation strategy for conserving all extant populations to maximize genomic representation of the species is recommended.  相似文献   

6.
The genetic structure of 18 populations of Lumnitzera racemosa from the Indo-West Pacific, including South China, Malay Peninsula, Sri Lanka, and North Australia, was assessed by inter simple sequence repeat (ISSR) markers. Our results showed a relatively high level of genetic variation at the species level (P = 87.04%, He = 0.260). The value of Gst was 0.642, suggesting significant genetic differentiation among populations. At the population level, however, genetic diversity was low (P = 32.17%, He = 0.097). When populations were grouped according to geographic regions, i.e., South China Sea, the East Indian Ocean, and North Australia, it was inferred from AMOVA that more than half the total variation (55.37%) was accounted for by differentiation between regions. A UPGMA dendrogram based on genetic distance also revealed a deep split between populations from these regions, indicating that Malay Peninsula and the Indonesia archipelago may play an important part on the genetic differentiation in L. racemosa. The high degree of population differentiation between regions and low genetic variation within populations recorded here highlights the need for appropriate conservation measures for this species, both in terms of incorporating further populations into protected areas, and the restoration strategies for separate regions.  相似文献   

7.
Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. are well-known Chinese medicinal plants. The population genetic variation of the two species was studied using inter simple sequence repeat (ISSR) molecular markers. High levels of genetic diversity are revealed in both S. chinensis (P = 88.36%, h = 0.2894, I = 0.4396) and S. sphenanthera (P = 84.09%, H = 0.2782, I = 0.4280). However, the population genetic differentiation is significantly different between the two species. The S. sphenanthera harbors as high as 27% of the genetic variation among populations but 73% within populations, whereas in S. chinensis 17% of the genetic variation occurs among populations and 83% within populations. Both significant (P < 0.05) heterozygosity excess and shifted mode of allele frequency distribution are detected in four out of six populations of S. chinensis and one out of five populations of S. sphenanthera, suggesting the occurrence of recent population bottlenecks in the two species. The different patterns of genetic variation in S. chinensis and S. sphenanthera are discussed in relation to their differences in pollination mechanism, geographic distribution and historical events, and the level of gene flow and genetic drift.  相似文献   

8.
Gardenia jasminoides Ellis is used in traditional Chinese medicine (TCM) in China. Levels of genetic variation and patterns of population structure within and among eight wild or cultivated populations of G. jasminoides Ellis in China were investigated using amplified fragment length polymorphism (AFLP) markers. Of the 11 primers screened, four produced highly reproducible AFLP bands. Using these primers, 244 discernible DNA fragments were generated with 165 bands (67.6%), were polymorphic, indicating considerable genetic variation at the species level. In contrast, there were relatively low levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 36.89% to 59.43%. Genetic diversity within populations ranged from 0.2086 to 0.3108, averaging 0.2392 at the species level. A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (76.59%), Shannon's index analysis (64.8%) and AMOVA analysis (72.75%). No significant statistical differences (analysis of molecular variance [AMOVA], p = 0.0639) in AFLP variation were found between regions. However, the variance among populations and within populations differed significantly (p < 0.001). An indirect estimate of historical levels of gene flow (Nm = 1.7448) was consistent with the high mean genetic identity (mean I = 0.9263) found among populations. There is an association between geographic and genetic distances between populations. Presently gene change exists between populations.  相似文献   

9.
Incarvillea younghusbandii Sprague (Bignoniaceae) is a perennial herbaceous plant endemic to Qinghai-Tibetan Plateau. As a species of medical and horticulture importance, I. younghusbandii is threatened by over exploitation and habitat fragmentation. In this study, we analyze the genetic diversity and population structure of I. younghusbandii using amplified fragment length polymorphism (AFLP) markers. Our data reveal very low levels of genetic diversity in seven natural populations across Tibet. Specifically, at population level, the average Nei's genetic diversity index (HE) and Shannon's diversity index (I) were 0.063 and 0.096, respectively. In contrast, high genetic differentiation among populations (Gst = 0.6238, ΦST = 0.614) is detected. The results of Neighbor-joining cluster, PCO, and STRUCTURE assignment reveal consistent pattern, suggesting seven well-defined genetic groups that are concordant with their geographical origins. The possible mechanisms and implications of these findings for conservation are discussed.  相似文献   

10.
The West Himalayan yew, Taxus fuana Nan Li & R.R. Mill (Taxaceae), is an endangered species endemic to the Western Himalayas. An investigation of the genetic diversity of wild populations of T. fuana in Pakistan was undertaken. The genetic diversity and genetic structure was quantified using random amplified polymorphic DNA (RAPD) variation in 219 individuals of the 10 populations. Of the 32 universal primers screened 16 produced highly reproducible, clear RAPD bands. Using these primers, 193 discernible DNA fragments were generated, of which 164 (84.97%) were polymorphic. The statistical results indicated that there was a relatively low genetic diversity within populations (with percentages of polymorphic bands, PPB, ranging from 29.53 to 50.26%, with an average of 38.34% and a Nei's genetic diversity index (HE) of 0.1165), and a high genetic differentiation among populations (GST = 0.5842, ΦST = 0.5685) within these populations. The gene flow (Nm) was low with only 0.3558.  相似文献   

11.
Sinojackia xylocarpa is a Chinese endemic species that is extinct in the wild but extant in botanical gardens. Microsatellites were used to investigate the genetic diversity and mating system of this species for future use in a reintroduction program. Ex situ conserved populations of S. xylocarpa maintain intermediate levels of genetic diversity (HE = 0.570–0.640). However, a general and significant heterozygote excess was found, with a mean FIS of −0.103. S. xylocarpa was determined to be predominantly outcrossing (tm = 0.992; ts = 1.092). Population size and genetic diversity were found to be positively correlated (r = 0.991; P = 0.084). Principal coordinate analysis (PCA) suggests that all extant individuals are derived from two source populations. Reintroduction strategies of S. xylocarpa were proposed on the basis of these results.  相似文献   

12.
Genetic diversity within and among six natural populations of Nypa fruticans from China, Vietnam, and Thailand was assessed using SSR and ISSR analysis. Our results showed an extremely low level of genetic diversity of N. fruticans (at the species level, P = 11.76% and 2.88%, He = 0.0279 and 0.0113, I = 0.0470 and 0.0167 by SSRs and ISSRs, respectively) across a total of 183 individuals. No genetic variation was detected within any population except for the Thailand population by SSRs (P = 11.76%, He = 0.0417; I = 0.0622). The bottlenecks during glacial epochs, founder effects, and propagation pattern may be responsible for the extremely low level of genetic diversity of N. fruticans.  相似文献   

13.
Rheum tanguticum is an important but endangered traditional Chinese medicine endemic to China. The wild resources have been declining. Establishing the genetic diversity of the species would assist in its conservation and breeding program. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population genetic structure in 13 wild populations of R. tanguticum from Qinghai Province. Thirteen selected primers produced 329 discernible bands, with 326 (92.94%) being polymorphic, indicating high genetic diversity at the species level. The Nei's gene diversity (He) was estimated to be 0.1724 within populations (range 0.1026–0.2104), and 0.2689 at the species level. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly within populations (71.02%), but variance among populations was only 28.98%. In addition, Nei's differentiation coefficients (Gst) was found to be high (0.3585), confirming the relatively high level of genetic differentiation among populations. Mantel test revealed a significant correlation between genetic and geographic distances (r = 0.573, P = 0.002), and the unweighted pair-group method using arithmetic average (UPGMA) clustering and Principal coordinates analysis (PCoA) demonstrated similar results. Meanwhile, the genetic diversity of R. tanguticum positively correlated with altitude and annual mean precipitation, but negatively correlated with latitude and annual mean temperature. This result might be an explanation that the natural distribution of R. tanguticum is limited to alpine cold areas. We propose conservation strategy and breeding program for this plant.  相似文献   

14.
To set up a rational collecting strategy for germplasm of the edible-seeded cucurbit Cucumeropsis mannii, a study was conducted using 24 morphological and seven putative enzyme markers to determine the intra-specific variability from 16 and 22 accessions (representing three cultivars), respectively. The analysis of variance, showed a significant difference between the three cultivars. Principal component analysis pointed out a variation among individuals, mainly on the basis of flower, fruit, and seed size. Dendrogram with UPGMA method allowed clustering of the cultivars. Genetic diversity indices estimated equalled: 9.96% for the proportion of polymorphic loci (P), 1.10 for the number of alleles (A) and 0.023 for observed heterozygosity (Ho). The level of the within accessions genetic diversity (HS = 0.078) was higher than among accessions (DST = 0.042). Nei's genetic distances between the three cultivars were also low (0.079–0.147), indicating a high degree of similarity of the analysed cultivars.  相似文献   

15.
Rheum tanguticum (Polygonaceae), an endangered plant, is endemic to the Qinghai-Tibetan Plateau. A total of 114 individual of R. tanguticum from 10 geographically separate populations were analyzed using seven pairs simple sequence repeats (SSR) markers. 102 alleles were recorded, with an average of 14.6 alleles per locus (ranging from 13 to 17) and the expected heterozygosity (He) ranged from 0.384 to 0.515 (average 0.459). The genetic differentiation between populations was relatively high (Fst = 0.249); the gene flow (Nm = 0.754), however, was limited, which suggested that around 21.18% of the total genetic variations occurred between populations. Our results revealed high levels of genetic variations within and between populations. The endangered status of this species is probably due to harvesting of the wild populations, rather than a lack of the genetic diversity. Anthropologic effects as well as other factors may, together, have shaped the genetic structure of this species.  相似文献   

16.
Studies were performed to investigate the genetic variation of 14 natural populations of Gynostemma pentaphyllum (Thunb.) Makino, an outcrossing clonal plant species in China, using inter-simple sequence repeat (ISSR) markers. Fourteen selected primers were used to amplify DNA samples from 140 individuals, and totally 194 loci were detected. The percentage of polymorphic bands (PPBs) showed that the genetic diversity was pretty high at the species level (PPB = 96.39%) but quite low at the population level (PPB = 1.03–25.26%). Shannon's information index (I) and Nei's gene diversity (h) displayed a similar trend to PPB. According to the hierarchical analysis of molecular variance (AMOVA) and Nei's analysis of gene diversity, the percentages of genetic variation among populations were 88.66 and 88.94%, respectively, indicating a high level of inter-population genetic differentiation. The low levels of genetic diversity within populations and high genetic differentiation among populations were assumed to result from the limited gene flow, the clonal nature and genetic drift. Based on the genetic data, effective conservation strategies were proposed for conserving this traditional Chinese medicinal herb. Concerning the management of G. pentaphyllum, we suggested that in situ conservation be an important and practical measure for maintaining the genetic diversity and that a possibly maximum number of populations be conserved. Populations EMS and HLT, in which particularly low levels of genetic variation were characterized, should be given the priority for ex situ conservation.  相似文献   

17.
Monimopetalum chinense Rehd. is an endangered woody vine endemic to eastern China. Using amplified fragment length polymorphism (AFLP) markers, we examined levels of genetic variation within and among eleven populations located across the species’ distribution. Although modest levels of heterozygosity were detected, other measures of genetic diversity registered relatively high levels of variability, both at the species level (P = 91.0%, HE = 0.232, IS = 0.365) and at the population level (P = 53.0%, HE = 0.155, IS = 0.239). Populations also exhibited high levels of genetic differentiation (Nei’s genetic diversity analysis, GST = 0.330), corresponding to isolation-by-distance and hierarchical population structure. These results indicate that, despite low levels of gene flow, populations of M. chinense still harbor substantial amounts of genetic diversity. Management plans for the species should include measures that ensure genetic diversity remains high within and among extant populations.  相似文献   

18.
19.
The black-spotted tokay gecko and red-spotted tokay gecko have different distribution areas and are significantly different in appearance but are classified into the same species Gekko gecko. Twelve microsatellite loci were isolated, characterized and evaluated from wild black-spotted tokay geckos for the first time. Of them, nine loci were successfully amplified in red-spotted tokay geckos using multiplex polymerase chain reactions (PCRs). A total of 208 different alleles were observed in the 70 wild black-spotted and red-spotted tokays, and the average number of alleles per locus was 17.3. The average values for observed heterozygosity, expected heterozygosity and polymorphism information content were 0.762, 0.891 and 0.871, respectively, which showed that the wild G. gecko population had a high level of genetic variability. Both black-spotted tokays and red-spotted tokays showed a significant (P < 0.001) deficit of heterozygotes. The red-spotted tokay (HE = 0.881, A = 16.4) had a higher level of genetic variability than black-spotted tokay (HE = 0.804, A = 10.7). The pairwise FST (P < 0.001) estimates of the two types of tokay were 0.143, which indicated that there was a significant level of genetic differentiation between the two.  相似文献   

20.
Rare plant species can be divided into naturally, ‘old rare’ species and anthropogenically, ‘new rare’ species. Many recent studies explored genetic diversity of ‘new rare’ species. Less is, however, known about genetic diversity of ‘old rare’ species. We examined isozyme genetic variability of 20 populations of an ‘old rare’ plant species, Ligularia sibirica (Asteraceae) in the Czech and Slovak Republic. It is a long-lived perennial herb with mixed-mating breeding system, widely distributed from East Asia to European Russia, with few isolated relict populations in the remaining part of Europe.The results showed high genetic diversity within populations (80.8%) and a low level of genetic differentiation (FST = 0.179). Genetic distance between populations correlated significantly with geographic distance. There was also a significant positive correlation between genetic diversity and population size. This is probably caused by destruction of habitats in last centuries and subsequent decrease of population size. Patterns of genetic diversity suggest that the recent distribution is a result of stepwise postglacial migration of the species and subsequent natural fragmentation.We conclude that L. sibirica populations preserve high levels of genetic diversity and are not yet threatened by genetic factors. However, this may change if changes in habitat conditions continue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号