首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The calcium-dependent release of [3H]dopamine ([3H]DA) elicited by field stimulation or potassium is modulated through activation of stereoselective inhibitory DA autoreceptors of the D-2 subtype that are pharmacologically different from the D-1 DA receptor subtype linked to the stimulation of adenylate cyclase (EC 4.6.1.1). The D-2 DA autoreceptors appear to be endogenously activated by DA because DA receptor antagonists such as S-sulpiride increased the stimulation-evoked release of [3H]DA. Nanomolar concentrations of norepinephrine (NE) and epinephrine (E) inhibited in a concentration-dependent manner the electrical stimulation-evoked release of [3H]DA. The inhibitory effect of these catecholamines was not modified by S-sulpiride, which, on the contrary, selectively antagonized the inhibition of [3H]DA release elicited by exogenous DA. Phentolamine or (+/-)-propranolol did not affect the release of [3H]DA from rabbit retina. The alpha antagonist phentolamine competitively antagonized the inhibitory effect of both NE and E, which suggests that these catecholamines activate alpha receptors in retina. The decrease by catecholamines of the calcium-dependent release of [3H]DA appears not to involve beta adrenoceptors because their inhibitory effect was not modified by propranolol. Under identical experimental conditions (i.e., nomifensine, 30 microM), serotonin did not modify the stimulated release of [3H]DA. In conclusion, in the rabbit retina, DA autoreceptors of the D-2 subtype appear to modulate endogenously released DA whereas inhibitory presynaptic alpha receptors might be of pharmacological importance as sites of action for retinal or blood-borne catecholamines.  相似文献   

3.
Zawilska JB  Rosiak J  Nowak JZ 《Life sciences》2000,67(18):2233-2246
Effects of near-ultraviolet radiation (UV-A; 325-390 nm, peak at 365 nm) on melatonin content and activity of serotonin N-acetyltransferase (AA-NAT; a key regulatory enzyme in melatonin biosynthesis) were examined in the retina of chickens. Acute exposure of dark-adapted animals to UV-A light produced a marked decline in melatonin content and AA-NAT activity of the retina. The magnitude of the observed changes was dependent upon duration of the light pulse and age of chickens, with 1-2-week old birds being more sensitive to UV-A action than 6-7-week old ones. The decrease in the nocturnal AA-NAT activity evoked by a 5-min UV-A pulse gradually deepened during the first 30 min after the return of chickens to constant darkness, then the enzyme activity began to rise, reaching nearly complete restoration within 2.5 hr. Systemic administration to chickens of alpha-methyl-p-tyrosine (an inhibitor of catecholamine synthesis; 0.3 g/kg) blocked the suppressive effect of UV-A light on retinal AA-NAT activity. Haloperidol, sulpiride (blockers of D2-family of dopamine (DA) receptors) and 2-chloro-11-(4-methylpiperazino)dibenz[b,f]oxepin (an antagonist of D4-DA receptors), given intraocularly (1-100 nmol/eye) prevented the UV-A light-evoked decrease in AA-NAT activity in the chicken retina in a dose-dependent manner, while raclopride (300 nmol/eye), an antagonist of D2/D3-DA receptors, was ineffective. In dark-adapted chickens exposure to UV-A light increased the DA content of the retina. It is concluded that UV-A radiation, similar to visible light, potently suppresses melatonin biosynthesis in the retina of chicken, with a D4-dopaminergic signal playing the role of an intermediate in this action.  相似文献   

4.
1.  If the eyes of young chickens are deprived of clear vision by translucent occluders, they develop considerable amounts of axial myopia within days. At the same time, the day time retinal dopamine levels drop by about 30%. Because the retinal dopamine levels of normally sighted chicks also differ diurnally and are low at night, we expected that the rate of axial eye growth might also differ during this time.
2.  Unexpectedly, eyes grew in length only during the day (about 0.13 mm/day) and even shrank during the night (about -0.04 mm/night, average net growth + 0.09 mm in 24 h).
3.  If the eyes were occluded, they grew both during the day and also at night (average net growth: + 0.16 mm in 24 h). Therefore, development of deprivation myopia was a result of the lack of growth inhibition at night rather than of excessive growth during the day when the actual deprivation occurred.
4.  Suppression of dopaminergic retinal pathways by intravitreal injections of the neurotoxin 6-hydroxy-dopamine (6-OHDA) also suppressed development of deprivation myopia and it restored the growth inhibition at night. With normal visual experience, the drug had no effect on axial eye growth and refractive state.
5.  Diurnal growth rhythms of the eyes disappeared under continuous light.
6.  Our results show that: (a) normal diurnal eye growth rhythms require a normal (12/12 h) light cycle and normal visual experience; with a degraded retinal image during the day, growth rates at night change so that they relate to retinal dopamine levels in the opposite way as with normal visual experience, (b) intact retinal dopaminergic pathways are necessary to mediate the deprivation-induced alterations in diurnal growth rhythms and myopia, (c) deprivation myopia is not simply a result of the lack of visual feedback control of eye growth during deprivation but rather of an active process related to abnormal diurnal dopamine rhythms.
  相似文献   

5.
6.
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.  相似文献   

7.
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.  相似文献   

8.
Using the Golgi staining method with the modification suggested by Colonnier (J. Anat. 98:327, 1964), we have carried out a morphological study of the bipolar cells of the chicken and classified them into various morphological types. In the classification given we have described the existence of seven main groups of bipolar cells that differ in shape and spread of their dendritic network. In addition, within each of these groups we have taken into account other morphological features, such as the presence and position of Landolt' s club, the size of the dendritic field, the presence of an accessory dendritic process, the position of the perikaryon in the INL. The stratification of the axonal ending is demonstrated but cannot be related to the classification based on dendritic morphology that we have chosen.  相似文献   

9.
The vertebrate pigment cell, with the exception of mammals and birds, is able to provide the animal with rapid colour changes, which involve dispersion and aggregation of pigment granules in response to hormonal and neuronal agents, and in some cases as a direct response to light. The search for the mechanisms through which Xenopus leavis melanophores respond to light led to the discovery of a new photopigment, melanopsin, with a different spectral sensitivity to that of rhodopsin. This photopigment was also found in mammalian retinal ganglion cells that project to the suprachiasmatic nucleus and other non-visual retinorecipient areas. Herein we demonstrate (by RT-PCR, cloning and sequencing) for the first time that chick melanocytes express melanopsin, and confirmed the presence of the protein by immunocytochemistry. In the chicken retina, we revealed by immunocytochemistry that ganglion cells express melanopsin, but the highest density of immunopositive cells was found in the inner nuclear layer. Quantitative PCR showed that the retina of animals kept in 6 h light: 18 h dark possessed three-fold higher melanopsin mRNA content than animals kept in longer photoperiod, thus demonstrating that light modulates melanopsin expression in chickens.  相似文献   

10.
The effects of dopamine on the release of thyrotropin-releasing hormone (TRH) from the rat retina in vitro were studied. The rat retina was incubated in the medium 199 (pH 7.4) with 1.0 mg/ml of bacitracin and 100 micrograms/ml of ascorbic acid. The amount of TRH release into the medium was measured by radioimmunoassay. The TRH release from the rat retina was inhibited significantly in a dose-related manner with the addition of dopamine, but not with pimozide. The inhibitory effects of dopamine on TRH release from the rat retina were blocked with an addition of pimozide to the medium. The elution profile of methanol-extracted rat retina on sephadex G-10 was identical to that of synthetic TRH. From these findings it is concluded that the dopaminergic system inhibits TRH release from the rat retina in vitro.  相似文献   

11.
GDNF family receptor alpha (GFRalpha) receptors are involved in the regulation of different aspects of embryonic development such as proliferation, migration, differentiation and survival. To determine the possible role of GFRalpha4 in retinal development, we analysed its expression in the developing chicken retina. We found that GFRalpha4 is temporally co-expressed with c-ret. Both, the temporal and spatial expression of GFRalpha4 is developmentally regulated during retinogenesis and is first detected in cells of the ganglion cell layer at E6. As development of the retina proceeds, the expression of GFRalpha4 extends to cells of the inner half of the inner nuclear layer and to cells of the outermost cell row of the inner nuclear layer. Later on, GFRalpha4 expression is also found in additional cells of the outer half of the inner nuclear layer and in a subpopulation of photoreceptors. A central-to-peripheral gradient of retinal differentiation is evident, as the onset of GFRalpha4 expression is first detectable in the central retina, while it is delayed by two days in its periphery.  相似文献   

12.
Glycolipid analysis of chicken retina and brain indicated the presence of cerebroside, cerebroside 3-sulphate and sulphogalactosylglycerolipid In retina, the ratio of cerebroside to cerebroside 3-sulphate was approximately half compared to brain. During chicken retina ontogenesis the ratio of cerebroside 3-sulphate to sulphogalactosylglycerolipid increased rapidly and in the adult animal, the amount of cerebroside 3-sulphate was 14 times higher than that of sulphogalactosylglycerolipid. The activity of PAPS: cerebroside sulphotransferase and arylsulphatase A in developing chicken retina indicated that the general ontogenic profiles of retinal PAPS: cerebroside sulphotransferase and arylsulphatase A were similar to those obtained for the brain. Both the enzymes showed the highest activity just before hatching. The significance of occurrence of sulpholipids in retina is discussed.  相似文献   

13.
14.
Both spermidine and spermine are acetylated in chicken brain and retina. From spermidine, more N1-acetylspermidine than N8-acetylspermidine is formed by both the brain and the retinal cytosol. Km for spermidine is similar with the enzyme preparation of the two tissues, but that for spermine is lower with the retinal preparation. Both tissues contain an activity able to reduce spermidine acetyltransferase activity. Both alkaline phosphatase and cAMP-dependent protein kinase (catalytic subunit) are able to inactivate the spermidine acetyltransferase activity of both tissues. Spermidine acetyltransferase activity and polyamine levels have been measured in both brain and retina during embryonic life. Only in the last part of the development can enzyme activity be correlated with the retina spermidine and spermine concentration.  相似文献   

15.
The crucian carp retina was used to study the effects of the melatonin antagonist p697 (N-pentanoyl 2-benzyltryptamine) and the melatonin agonists [+]- and [-]-AMMTC (N-acetyl-4-aminomethyl-6-methoxy-9-methyl-1,2,3,4-tetrahydrocarbazol e) on horizontal cell spinule formation, an indicator of the state of retinal adaptation. DH97 was capable of both counteracting dark-adaptive spinule degradation and inducing light-adaptive spinule formation at the beginning of the dark phase. Addition of dopamine receptor blockers opposed the action of DH97 on spinules, with SCH 23930, a D1 dopamine receptor antagonist, being more effective than the D2 receptor antagonist sulpiride. DH97 induced a twofold increase in dopamine release. We conclude that melatonin acts as a dark signal within the teleost retina by inhibiting the dopaminergic system. In accordance with this, both enantiomers of AMMTC prevented light-induced spinule formation, and reduced dopamine release to below dark-adaptive baseline levels. We suggest that the suppression of spinule formation by AMMTC may be due to either a direct inhibitory interaction between the melatonin agonist and horizontal cell dopamine D1 receptors, or an inhibitory effect on the activity of the dopamine-releasing interplexiform cells.  相似文献   

16.
GDNF and the GDNF receptors, c-Ret, GFR alpha 1 and 2 mRNA is expressed in the developing chicken retina. GDNF labelling was mainly found in embryonic day 4-5 retina but weak labelling could also be found over scattered retinal cells at later stages. c-ret labelling was found over ganglion cells, amacrine and horizontal cells; the preferred GDNF receptor (GFR alpha 1) over amacrine and horizontal cells; and the less preferred GDNF receptor (GFR alpha 2) over ganglion cells, amacrine cells and photoreceptors.  相似文献   

17.
18.
19.
In this paper we analysed the presence and localisation of thyrotropin during retinal development in Gallus domesticus. Specific thyrotropin-like immunohistochemical staining was observed from the beginning of the second incubation week to one day post-hatching in chicken retina. Thyrotropin is a 28.3 KDa glycoprotein, synthesised by the anterior pituitary gland, and it is implicated in the stimulation of the synthesis and release of thyroid hormones. Until now, the action of thyrotropin has been established exclusively in hormonal terms. Recently, this glycoprotein has been localised in synaptic processes in the human retina by using a specific antiserum (Fdez-Trujillo et al., 1995). To the best of our knowledge this report is the first time that thyrotropin has been immunocytochemically demonstrated in the chicken retina. The pattern of thyrotropin-like immunoreactivity suggests that this glycoprotein could act as modulator of synaptic transmission, but it may also play a much broader role in regulating trophic functions.  相似文献   

20.
The expression patterns of the seven members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 were analyzed in the developing chicken retina by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the developing retinal layers. ADAM9, ADAM10 and ADAM17 are widely expressed in the differential layers of the retina throughout the whole embryonic period, while ADAM12 and ADAM13 are mainly expressed in the ganglion cell layer at a later stage. ADAM22 and ADAM23 are restricted to the inner nuclear layer and the ganglion cell layer at a later stage. Furthermore, ADAM10 protein is co-expressed with the four members of the classic cadherins, N-cadherin, R-cadherin, cadherin-6B and cadherin-7 in distinct retinal layers. Therefore, the differential expression of the investigated ADAMs in the developing retina suggests the contribution of them to the retina development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号