首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas oxalaticus was grown in carbon- and energy-limited continuous cultures either with oxalte or formate or with mixtures of these substrates. During growth on the mixtures, simultaneous utilization of the two substrates occurred at all dilution rates tested. Under these conditions oxalate repressed the synthesis of ribulosebisphosphate carboxylase. The degree of this repression was dependent on the dilution rate and the ratio of oxalate and formate in the medium reservoir. At a fixed oxalate/formate ratio repression was greatest at intermediate dilution rates, whereas derepression occurred at both low and high dilution rates. Progressive depression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation at low dilution rates was attributed to the decreasing concentration of intracellular repressor molecule(s), parallel to the decreasing concentration of the growth-limiting substrates in the culture. To account for the derepression at higher dilution rates, it is proposed that the rate of oxalyl-CoA production from oxalate limits the supply of metabolic intermediates and that additional energy and reducing power generated from formate drains the pools of metabolic intermediates sufficiently to lower the intracellular concentration of the repressor(s). During growth of Pseudomonas oxalaticus on the heterotrophic substrate oxalate alone, at dilution rates below 10% of the maximum specific growth rate, derepression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation was observed to a level which was 50% of that observed during growth on formate alone at the same dilution rate. It is concluded that in Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by a repression/derepression mechanism and that the contribution of autotrophic CO2 fixation to the biosynthesis of cell material in this organism is mainly controlled via the synthesis of these enzymes.Abbreviations RuBPCase ribulosebisphosphate carboxylase - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - SR concentration of growth-limiting substrate in reservoir  相似文献   

2.
The regulation of C1-metabolism in Xanthobacter strain 25a was studied during growth of the organism on acetate, formate and methanol in chemostat cultures. No activity of methanol dehydrogenase (MDH), formate dehydrogenase (FDS) or ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisC/O) could be detected in cells grown on acetate alone over a range of dilution rates tested. Addition of methanol or formate to the feed resulted in the immediate induction of MDH and FDH and complete utilization (D=0.10 h-1) of acetate and the C 1-substrates. The activities of these enzymes rapidly dropped at the higher growth rates, which suggests that their synthesis is further controlled via repression by heterotrophic substrates such as acetate. Synthesis of RuBisC/O already occurred at low methanol concentrations in the feed, resulting in additive growth yields on acetate/methanol mixtures. The energy generated in the oxidation of formate initially allowed an increased assimilation of acetate (and a decreased dissimilation), resulting in enhanced growth yields on the mixture. RuBisC/O activity could only be detected at the higher formate/acetate ratios in the feed. The data suggest that synthesis of RuBisC/O and CO2 fixation via the Calvin cycle in Xanthobacter strain 25 a is controlled via a (de)repression mechanism, as is the case in other facultatively autotrophic bacteria. Autotrophic CO2 fixation only occurs under conditions with a diminished supply of heterotrophic carbon sources and a sufficiently high availability of suitable energy sources. The latter point is further supported by the clearly more pronounced derepressing effect exerted by methanol compared to formate.Abbreviations FDH formate dehydrogenase - FBPase fructose-1,6-bisphosphatase - ICDH isocitrate dehydrogenase - MDH methanol dehydrogenase - PQQ pyrrolo quinoline quinone - PRK phosphoribulokinase - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate - TCA tricarboxylic acid cycle  相似文献   

3.
During heterotrophic growth on acetate, in batch culture, the autotrophic growth potential of Thiobacillus A2, i.e. the capacity to oxidize thiosulfate and to fix carbon dioxide via the Calvin cycle, was completely repressed. The presence of thiosulfate in a batch culture with acetate as the organic substrate partly released the repression of the thiosulfate oxidizing system. Cultivation of the organism in continuous culture at a dilution rate of 0.05 h-1 with different concentration ratios of thiosulfate and acetate in the reservoir medium led to mixotrophic growth under dual substrate limitation. Growth on the different mixtures of acetate and thiosulfate yielded upto 30% more cell dry weight than predicted from the growth yields on comparable amounts of these substrates separately. The extent to which the carbon dioxide fixation capacity and the maximum thiosulfate and acetate oxidation capacity are repressed appeared to be a function of the thiosulfate to acetate concentration ratio in the reservoir medium. The results of 14C-acetate assimilation experiments and of gas-analysis demonstrated that the extent to which acetate was assimilated depended also on the substrate ratio in the inflowing medium. Under the different growth conditions surprisingly little variation was found in some tri-carboxylic acid cycle enzyme activities. Cultivation of T. A2 at different growth rates with a fixed mixture of thiosulfate (18 mM) and acetate (11 mM) in the medium, showed that dual substrate limitation occured at dilution rates ranging from 0.03–0.20 h-1.Abbreviations PPO 2,5-diphenoloxazol - RubPCase Ribulose-1,5-bisphophate carboxylase - Tris tris (hydroxymethyl) aminomethane - EDTA ethylenediaminetetra-acetic acid  相似文献   

4.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

5.
Diauxic growth was observed in batch cultures of Pseudomonas oxalaticus when cells were pregrown on acetate and then transferred to mixtures of acetate and oxalate. In the first phase of growth only acetate was utilized. After the exhaustion of acetate from the medium enzymes involved in the metabolism of oxalate were synthesized during a lag phase of 2 h, followed by a second growth phase on oxalate. When the organism was pregrown on oxalate, oxalate utilization from the mixture with acetate completely ceased after a few hours during which acetate became the preferred substrate. Similar observations were made with formate/oxalate mixtures in which formate was the preferred substrate. Until formate was exhausted, it completely suppressed oxalate metabolism, again resulting in diauxic growth. However, when the organism was pregrown on oxalate and then transferred to mixtures of oxalate and formate, both substrates were utilized simultaneously although the initial rate of oxalate utilization from the mixture was strongly reduced as compared to growth on oxalate alone.Since both preferred substrates cross the cytoplasmic membrane by diffusion, whereas oxalate is accumulated by an inducible, active transport system, the effect of acetate and formate on oxalate transport was studied at different external pH values. At pH 5.5 both substrates completely inhibited oxalate transport. However, at pH 7.5, the pH at which the diauxic growth experiments were performed, formate and acetate did not affect oxalate transport. Growth patterns and enzymes profiles suggest that, at higher pH values, formate and acetate possibly affect oxalate utilization via an effect on the internal pool of oxalyl-CoA, the first product of oxalate metabolism.Abbreviations PMS phenazine methosulphate - RuBPCase ribulosebisphosphate carboxylase - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - p.m.f. protonmotive force  相似文献   

6.
Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 M, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.  相似文献   

7.
Incubations of Arthrobacter P1 in batch culture in media with mixtures of acetate and methylamine resulted in sequential utilization of the two carbon substrates, but not in diauxic growth. Irrespective of the way cells were pregrown, acetate was the preferred substrate and subsequent studies showed that this is due to the fact that acetate is a strong inhibitor of the methylamine transport system and amine oxidase in Arthrobacter P1. An analysis of enzyme activities in cell-free extracts showed that synthesis of amine oxidase occurred already in the first growth phase with acetate, whereas rapid synthesis of hexulose phosphate synthase was only observed once methylamine utilization started. It is therefore concluded that in Arthrobacter P1 the synthesis of the enzymes specific for methylamine oxidation is not regulated co-ordinately with those involved in formaldehyde fixation, but induced sequentially by methylamine and formaldehyde, respectively.During growth of Arthrobacter P1 on the same mixture in carbon- and energy source-limited continuous cultures both substrates were used simultaneously and completely at dilution rates below the max on either of these substrates. Addition of methylamine, in concentrations as low as 0.5 mM, to the medium reservoir of an acetate-limited continuous culture (D=0.10 h-1) already resulted in synthesis of both amine oxidase and hexulose phosphate synthase. In the reverse experiment, addition of acetate to the medium reservoir of a methylamine-limited continuous culture (D=0.10 h-1), acetate was initially only used as an energy source. Synthesis of the glyoxylate cycle enzymes, however, did occur at acetate concentration in the feed above 7.5–10 mM. This indicates that at acetate concentrations below 10 mM the metabolism of the C1 substrate methylamine is able to cause a complete repression of the synthesis of the enzymes involved in carbon assimilation from the C2 substrate acetate.Abbreviations HPS Hexulose phosphate synthase - MS mineral salts - RuMP ribulose monophosphate  相似文献   

8.
The facultatively chemolithoautotrophic hydrogen-oxidizing bacteria Alcaligenes eutrophus and Alcaligenes hydrogenophilus partially derepressed the formation of phosphoribulokinase and ribulosebisphosphate carboxylase during heterotrophic growth on fructose or gluconate. We examined whether the indigenous magaplasmids in these bacteria that encode the ability to oxidize hydrogen affected this derepression. The results suggest an involvement of the plasmids in the derepression for the following reasons: (i) wild-type strains, except A. eutrophus TF93, exhibited the derepressible phenotype; (ii) plasmid-cured mutants formed the enzymes with formate as autotrophic growth substrate but did not derepress their formation during heterotrophic growth; (iii) the phenotype of the wild type was restored by transfer of the plasmids into plasmid-cured mutants. Plasmid pHG2 from strain TF93 differed from the other wild-type plasmids by conferring a non-derepressible phenotype onto the harboring strain. Mutants of A. eutrophus H16 carrying deletions in plasmid pHG1 showed a similar phenotype as that of the plasmid-cured mutants. We concluded that the plasmids from the various strains studied encode a regulatory ability to derepress phosphoribulokinase and ribulosebisphosphate carboxylase under heterotrophic growth conditions.Abbreviations PRK phosphoribulokinase - RuBPC ribulosebisphosphate carboxylase - Hox ability to oxidize hydrogen - Cfx ability to fix carbon dioxide autotrophically Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

9.
All Xanthobacter strains studied are versatile autotrophic bacteria, able to grow on methanol and other substrates. Strain 25a, a yellow-pigmented, pleomorphic, Gram-negative bacterium, capable of autotrophic growth on methanol, formate, thiosulfate, and molecular hydrogen, was isolated from an enrichment culture inoculated with soil from a subtropical greenhouse. Subsequent studies showed that the organism also grows on a wide range of multicarbon substrates. Ammonia, nitrate and molecular nitrogen were used as nitrogen sources. The taxonomic relationship of strains H4-14 and 25a with previously described Xanthobacter strains was studied by numerical classification. Strain H4-14 was identified as a X. flavus strain, but the precise position of strain 25a remained uncertain. It probably belongs to a new species of the genus Xanthobacter. The levels of various enzymes involved in autotrophic and heterotrophic metabolism were determined following growth of strains H4-14 and 25a in batch and continuous cultures. The mechanisms involved in controlling ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis in Xanthobacter strains appear to be comparable to those observed for other autotrophic bacteria, namely repression by organic compounds and derepression by autotrophic energy sources, such as methanol and hydrogen.Abbreviations API appareils et procédés d'identification - CS citrate synthase - ED Entner-Doudoroff pathway - FBP fructose-1,6-bisphosphate - FDH formate dehydrogenase - HPS hexulose-6-phosphate synthase - ICDH isocitrate dehydrogenase - KDPG 2-keto-3-deoxy-6-phosphogluconate - MDH methanol dehydrogenase - PRK phosphoribulokinase - PQQ pyrrolo quinoline quinone - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate  相似文献   

10.
1. The type of metabolism adopted by Pseudomonas oxalaticus during growth on a variety of carbon sources was studied. 2. The only substrate upon which autotrophic growth was observed is formate. 3. In mixtures of formate and those substrates upon which the organism can grow faster than on formate, e.g. succinate, lactate or citrate, heterotrophic metabolism results. 4. In mixtures of formate and those substrates upon which the organism can grow at a similar rate to that on formate, e.g. glycollate or glyoxylate, the predominant mode of metabolism adopted is heterotrophic utilization of the C2 substrate coupled with oxidation of formate as ancillary energy source. 5. P. oxalaticus grows on oxalate 30% slower than on formate. In mixtures of formate and oxalate, the predominant mode of metabolism adopted is autotrophic utilization of formate coupled with oxidation of oxalate as ancillary energy source. 6. In mixtures of formate and those substrates upon which the organism grows at a much lower rate than on formate, e.g. glycerol and malonate, the predominant mode of metabolism adopted is autotrophic utilization of formate. 7. It is concluded that synthesis of the enzymes involved in autotrophic metabolism is controlled by a combination of induction and metabolite repression.  相似文献   

11.
For Hyphomicrobium 53-49 capable of growing under various conditions, aerobic methanol, anaerobic methanol (with denitrification), autotrophic (H2-O2-CO2), aerobic ethanol and aerobic acetate, investigation and comparison of the specific activities of the following enzymes were performed: alcohol dehydrogenase (NAD-ethanol linked and NAD-methanol linked), primary alcohol dehydrogenase, formaldehyde dehydrogenase (NAD-GSH linked and DCPIP linked), formate dehydrogenase, serine hydroxymethyl transferase, hydroxypyruvate reductase, isocitrate lyase (icl), malate lyase, malate dehydrogenase, ribulosebisphosphate (RuBP) carboxylase, phos-phoenolpyruvate (PEP) carboxykinase (ADP linked), PEP carboxylase (phosphorylating), pyruvate carboxylase (NADH linked and NADPH linked) and α-ketoglutarate carboxylase (NADH linked and NADPH linked). On the basis of the data obtained, it was concluded that during growth on methanol, aerobically and anaerobically, the icl+ serine pathway operated, while during autotrophic growth on H2-O2-CO2, CO2 was incorporated through the RuBP pathway and others, and during growth on ethanol or acetate, neither the serine pathway nor the RuBP pathway operated. The organism changed its metabolism through the regulation of the metabolic enzymes according to the growth conditions.  相似文献   

12.
Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H14CO3 incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h–1, equivalent to 1/2 max. The affinity of the pyruvate carboxylase for bicarbonate was twice that of the PEP carboxylase under the conditons of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO 3 concentration over the range 0.7–2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.  相似文献   

13.
Metabolic control associated with diauxic growth of Pseudomonas oxalaticus in batch cultures on mixtures of formate and oxalate was investigated by measuring intracellular enzyme and coenzyme concentrations and Q O 2values during transition experiments from oxalate to formate and vice versa. In transition from oxalate to formate oxalyl-CoA reductase concentration declined after the exhaustion of oxalate and ribulose-1,5-diphosphate carboxylase and 14CO2 fixation appeared upon addition of formate. In the reciprocal transition, ribulose-1,5-diphosphate carboxylase and 14CO2 fixation rate declined sharply after formate exhaustion, and oxalyl-CoA reductase appeared only after addition of oxalate. The intracellular NAD and NADP concentrations measured in the same experiments are reported. At substrate exhaustion the proportion of NAD in the reduced form fell from 15–20% to 2%. On addition of formate to an oxalate-starved culture there was an immediate increase in the proportion of NADH to 50%; such an increase was not observed in the reverse experiment.Abbreviations RuDP ribulose-1,5-diphosphate - HEPES 2-(N-2 hydroxyethylpiperazin-N-yl) ethane sulphonic acid  相似文献   

14.
Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus.  相似文献   

15.
The effects of a number of organic substrates on the autotrophic metabolism of Hydrogenomonas eutropha were examined. Dual substrate (mixotrophic) cultivation in the presence of hydrogen plus either fructose or alanine allowed autotrophic growth to begin immediately after the exhaustion of the organic substrate. On the other hand, the presence of acetate, pyruvate, or glutamate caused a lengthy lag to occur before autotrophic growth commenced. With acetate or pyruvate this lag (plateau) in the dicyclic growth curve was due to the repression of ribulose diphosphate carboxylase (RDPC) synthesis during mixotrophic growth. During heterotrophic growth with glutamate, RDPC was partially repressed; however, during mixotrophic growth, RDPC activity was high. Thus the delay of autotrophic growth was not due to a repression of RDPC by glutamate. The data suggest that glutamate interferes with autotrophic metabolism by repressing the incorporation of inorganic nitrogen. The repression of these vital autotrophic functions by acetate, pyruvate, and glutamate occurred both in the presence and absence of hydrogen, i.e., during both heterotrophic and mixotrophic cultivation. The derepression of the affected systems during the plateau phase of the dicyclic growth curves was demonstrated. Carbon dioxide assimilation by whole cells agreed well with the RDPC activity of extracts from cells grown under similar conditions.  相似文献   

16.
Metabolic regulation in Pseudomonas oxalaticus OX1   总被引:1,自引:0,他引:1  
Diauxic growth of Pseudomonas oxalaticus was observed on a mixture of formate and oxalate in batch cultures. In the first phase of growth only formate was used. The capacity to oxidize oxalate appeared during the lag phase of 2–4 h after the exhaustion of formate and was followed by a second phase of growth on oxalate. The rate of autotrophic 14CO2 fixation measured in washed cell suspensions decreased markedly in this second growth phase on the addition of oxalate. In mixtures of formate with acetate, glyoxylate or glycollate, simultaneous utilization of both substrates was observed. During growth on acetate plus formate formate-oxidizing capacity remained low. With low acetate concentrations, sufficient formate remained after the exhaustion of acetate to support a second growth phase on formate. This phase followed a 1.5–2 h lag, during which formate-oxidizing capacity increased and the Calvin cycle enzymes were synthesized. In mixtures of formate with glyoxylate or glycollate, the formate-oxidizing capacity was high, formate was oxidized rapidly, and no second growth phase was seen. In these latter mixtures high activities of a membrane-bound, phenazine methosulphate/2,6-dichlorophenolindophenollinked formate dehydrogenase and low activities of the soluble NAD-linked formate dehydrogenase were detected. The synthesis of ribulose-1,5-diphosphate carboxylase was totally repressed during growth on formate plus glycollate and partially repressed on formate plus glyoxylate. The regulation of Calvin cyclus enzymes in Pseudomonas oxalaticus is discussed.  相似文献   

17.
Enzyme activities have been measured in the partners of a bacterial mating system consisting of the hydrogen autotroph Nocardia opaca (donor and Aut- recipient), the heterotroph Rhodococcus erythropolis (recipient) and intra- and interspecies transconjugants after growth on fructose, pyruvate and under autotrophic conditions. Specific activities of each of the enzymes hydrogenase, phosphoribulokinase and ribulosebisphosphate carboxylase were high in autotrophically grown cells of the donor and the transconjugants: they amounted to only 10% after growth on pyruvate. The recipient cells did not grow autotrophically and the enzymes mentioned were not detectable even after growth on pyruvate. Other enzymes of the Calvin cycle were constitutively formed in all strains examined.The properties of hydrogenase (K m for NAD, Rf in gel electrophoresis) and of ribulosebisphosphate carboxylase (K m for RuBP and Rf) were the same in the donor and transconjugant cells. The properties of glucose-6-phosphate dehydrogenase (K m for G-6-P and mode of inhibition by ATP and phosphoenolpyruvate) were the same in the recipient and the interspecies transconjugant cells and differed from those of the donor cells. The curves of growth under autotrophic conditions in batch culture of the donor and interspecies transconjugant were almost congruent. The specific activities of hydrogenase, phosphoribulokinase and ribulosebisphosphate carboxylase increased from 40% at the beginning to 100% at the end of the exponential growth phase; these enzymes were under coordinate control.The results are in accordance with genetic studies: the genetic information for autotrophic growth is localized on a so far unidentified genetic element and is transferred en bloc from N. opaca to Aut- mutants of the same strain or to recipient bacteria such as R. erythropolis; expression in the wild type and transconjugant cells is the same.Abbreviations G-6-P glucose-6-phosphate - 6-PG 6-phosphogluconate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Freshly isolated explants of the secondary phloem of carrot roots were exposed to 14C-leucine for various periods from t0—to 18 h and the 14C labelling of protein was studied by 2-dimensional PAGE followed by fluorograph. The labelling pattern of proteins indicated a sequential activation of synthesis of about 130 proteins during the 18 h experimental period prior to the onset of cell division activity.Abbreviations IAA indole acetic acid - 2iP 2-isopentenyladenine - PVP polyvinylpyrrolidone - CBB Coomassie brilliant blue - RuBPCase ribulosebisphosphate carboxylase - LSC liquid scintillation counter - spec.act. specific radioactivity - u.l. uniformly labelled  相似文献   

19.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

20.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号