共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Subsurface denitrification in a forest riparianzone: Interactions between hydrology and supplies ofnitrate and organic carbon 总被引:1,自引:0,他引:1
The influence of hydrology andpatterns of supply of electron donors and acceptors onsubsurface denitrification was studied in a forestriparian zone along the Boyne River in southernOntario that received high nitrogen inputs from a sandaquifer. Two hypotheses were tested: (1) subsurfacedenitrification is restricted to localized zones ofhigh activity; (2) denitrification zones occur atsites where groundwater flow paths transportNO3
– to supplies of available organiccarbon. A plume of nitrate-rich groundwater withconcentrations of 10–30 mg N L–1 flowed laterallyat depths of 1.5–5 m in sands beneath peat for ahorizontal distance of 100–140 m across the riparianzone to within 30–50 m of the river. In situ acetyleneinjections to piezometers revealed that significantdenitrification was restricted to a narrow zone ofsteep NO3
– and N2O decline at theplume margins. The location of these denitrificationsites in areas with steep gradients of groundwater DOCincrease supported hypothesis 2. Many of thesedenitrification hotspots occurred near interfacesbetween sands and either peats or buried river channeldeposits. Field experiments involving in situadditions of either glucose or NO3
– topiezometers indicated that denitrification wasC-limited in a large subsurface area of the riparianzone, and became N-limited beyond the narrow zone ofNO3
– consumption. These data suggest thatdenitrification may not effectively removeNO3
– from groundwater transported at depththrough permeable riparian sediments unlessinteraction occurs with localized supplies of organicmatter. 相似文献
3.
Nitrate (NO
3
–
) removal in riparian zones bordering agricultural areas occurs via plant uptake, microbial immobilisation and bacterial denitrification. Denitrification is a desirable mechanism for removal because the bacterial conversion of NO
3
–
to N gases permanently removes NO
3
–
from the watershed. A field and laboratory study was conducted in riparian soils adjacent to Carroll Creek, Ontario, Canada, to assess the spatial distribution of denitrification relative to microbial community structure and microbial functional diversity. Soil samples were collected in March, June, and August 1997 at varying soil depths and distances from the stream. Denitrification measurements made using the acetylene block technique on intact soil cores were highly variable and did not show any trends with riparian zone location. Microbial community composition and functional diversity were determined using sole carbon source utilization (SCSU) on Biolog® GN microplates. Substrate richness, evenness and diversity (Shannon index) were greatest within the riparian zone and may also have been influenced by a rhizosphere effect. A threshold relationship between denitrification and measures of microbial community structure implied minimum levels of richness, evenness and diversity were required for denitrification. 相似文献
4.
Effects of hydrology on spatial patterns of soil development in created riparian wetlands 总被引:4,自引:0,他引:4
Surficial soil development was studied in four wetland basins created on the floodplain of the Des Plaines River near Chicago,
Illinois, USA. These studies determined changes in the spatial distribution of plant-available nutrients as a result of establishing
two different wetland hydrologic regimes. Three wetland basins had mineral soils and one an organic soil. A geostatistical
analysis including kriging of collected data indicated that all soil parameters showed significant changes in their spatial
structure as a result of the water inputs and unidirectional flows. The degree of spatial variability as indicated by autocorrelation
in the soil data (i.e., points closer to one another are more similar than points further apart due to the influence of landscape
processes) declined for all parameters except Mg+2. Temporal changes in the spatial patterns of extractable phosphorus (P) and percent organic carbon (OC) tended to be inverse;
P declined in areas where OC increased and vice versa. The spatial pattern of these changes was dissimilar in the mineral
soils as compared to the organic soil and was related to patterns of primary productivity. Zones of P uptake and OC accumulation
were also related to wetland hydrology and primary productivity. Changes in the distribution of nutrients, particularly P,
may be viewed as a result of nutrient spirals within the wetlands. By comparison, the reorganization in the concentrations
of K+ and Ca+2 appear to have been mediated by cation exchange processes. The formation of new concentration gradients was strongly related
to both flow pathways and the different water inflow rates. The formation of concentration gradients in exchangeable cations
was not reflected in the average concentrations within each basin. Mean values changed significantly in only a few instances.
Reducing data in this way missed important biogeochemical changes occurring within the experimental wetland basins.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
5.
Seasonal variation in denitrification activity was measured in twoflooded water meadows, one on peaty and one on sandy soil, over a three-yearperiod. Measurements were taken during flooded and drained periods, usingthe acetylene-blockage technique, and the rates were compared to massbalance estimates of nitrate removal in the percolating water.Denitrification activity was higher in sandy soil than in peaty soil. Higherwater infiltration rate and thereby higher nitrate load was considered to bethe cause of the higher denitrification in the sandy soil. Floodingsignificantly increased denitrification, and the rates were higher in autumnand winter than in spring. This was considered to be a result of highernitrogen concentration in inflowing stream water during winter. Annualdenitrification was estimated to 430–460 kg N ha-1yr-1 in the sandy soil meadow, and 220 kg N ha-1yr-1 in the peaty soil meadow. In the sandy soil there was alarge discrepancy between nitrate removal rates and denitrification rates,which can be explained by nitrification of ammonium released from the soil.In the peaty soil nitrate disappearance and denitrification correspondedfairly well. 相似文献
6.
Field enrichments with nitrate in two spring-fed drainage lines within the riparian zone of a small woodland stream near Toronto, Ontario showed an absence of nitrate depletion. Laboratory experiments with riparian substrates overlain with nitrate enriched solutions revealed a loss of only 5–8% of the nitrate during 48 h incubation at 12°C. However, 22–24% of the initial nitrate was depleted between 24 and 48 h when a second set of substrate cores was incubated at 20°C. Short-term (3 h) incubations of fresh substrates amended with acetylene were used to estimate in situ denitrification potentials which varied from 0.05–3.19 g N g–1 d–1 for organic and sandy sediments. Denitrification potentials were highly correlated with initial nitrate content of substrate samples implying that low nitrate levels in ground water and riparian substrates may be an important factor in controlling denitrification rates. The efficiency of nitrate removal in spring-fed drainage lines is also limited by short water residence times of < 1 h within the riparian zone. These data suggest that routes of ground water movement and substrate characteristics are important in determining nitrate depletion within stream riparian areas. 相似文献
7.
A. F. Bouwman A. H. W. Beusen J. Griffioen J. W. Van Groenigen M. M. Hefting O. Oenema P. J. T. M. Van Puijenbroek S. Seitzinger C. P. Slomp E. Stehfest 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1621)
Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900–2000 and scenarios for the period 2000–2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr−1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408–510 Tg N yr−1 by 2050. In the period 1900–2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr−1, and this may remain stable or further increase to 275 Tg yr−1 by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr−1 between 1900 and 2000, and N2O–N emissions from 10 to 12 Tg N yr−1. The scenarios foresee a further increase to 142 Tg N2–N and 16 Tg N2O–N yr−1 by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O–N yr−1 in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans. 相似文献
8.
Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost 总被引:1,自引:0,他引:1
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone. 相似文献
9.
美国俄亥俄州人工河滨湿地甲烷排放 总被引:1,自引:0,他引:1
2008年11月-2009年10月,在美国俄亥俄州哥伦布市Olentangy河河滨湿地,运用静态箱·气相色谱法对比研究了不同水文模式和植被生长状况下2种植被类型(人工植被和自然植被)淡水河滨恢复湿地甲烷(CH4)排放的时空规律,探讨了湿地土壤温度、水文条件、植被和土壤碳含量等因子对CH4排放的影响.结果表明,人工植被和自然植被湿地CH4排放通量均有明显的季节变化规律,但自然植被的淡水湿地CH4排放量仍明显高于人工植被湿地的排放量,其年排放量分别为68和114gCH4-C· m-2·a-1(P<0.05),这是由于自然植被湿地相对于人工植被湿地有着更高的累积生产力.在2个实验湿地中,淹没深水区比干湿交替区有更高的CH4排放量,CH4排放通量的中值(平均值)分别为4.7(59.9)和0.09( 1.17)mg·m-2·h-1(P<0.01),波动的水文相对于静止水文条件可减少CH4排放量.并且,实验湿地CH4排放通量与土壤温度和土壤有机碳含量有一定的相关性.因此,可通过对湿地进行适当的植物配置和水文条件等设计和管理措施有效地减少CH4排放. 相似文献
10.
Eric Tabacchi David L. Correll Richard Hauer Gilles Pinay Anne-Marie Planty-Tabacchi Robert C. Wissmar 《Freshwater Biology》1998,40(3):497-516
1. Riparian structure and function were considered from a longitudinal perspective in order to identify multiscale couplings with adjacent ecosystems and to identify research needs. 2. We characterized functional zones (with respect to vegetation development in association with various biogeochemical processes) within geomorphological settings using a delineation based upon erosional, transitional and depositional properties. 3. Vegetation dynamics within the riparian corridor are clearly influenced substantially by hydrological disturbance regimes. In turn, we suggest that vegetation productivity and diversity may widely influence riverine biogeochemical processes, especially as related to the consequences of changing redox conditions occurring from upstream to downstream. 4. However, surface and groundwater linkages are the predominant controls of landscape connectivity within riparian systems. 5. The importance of riparian zones as sources and sinks of matter and energy was examined in context of structural and functional attributes, such as sequestering or cycling of nutrients in sediments, retention of water in vegetation, and retention, diffusion or dispersal of biota. 6. The consequences of interactions between different communities (e.g. animals and plants, micro-organisms and plants) on biogeochemical processes are notably in need of research, especially with respect to control of landscape features. Multiscale approaches, coupling regional and local factors in all three spatial dimensions, are needed in order to understand more synthetically and to model biogeochemical and community processes within the river-riparian-upland landscape of catchments. 相似文献
11.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the
riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved
inorganic N (DIN; NH4
+- and NO3
−-N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the
two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3
−-N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream,
DIN shifted to dominance by NH4
+-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total
dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON
rather than inorganic N. Concentrations of NH4
+ and NO3
− were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water.
Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled
by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological
differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream
below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration
is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic
export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly
modify the importance of specific biotic components. 相似文献
12.
Losses of species and changes in the composition of plant communities are likely to influence numerous ecosystem functions. Changes in the plant‐soil interactions that control decomposition, in particular, could alter carbon and nutrient cycling in soils and further alter other ecosystem functions. The effects of plant communities on decomposition may depend both on the type of tissue being decomposed and also on the different stages of the decomposition process. We used an experimental design where single plant functional groups were removed from a northern grassland to examine the role of plant identity in determining both short‐term and long‐term above‐ and belowground decomposition rates. Plant removals were conducted across fertilization and fungicide treatments to examine environmental context‐dependency of functional group identity effects on decomposition. There were significant effects of plant functional group identity on aboveground decomposition, with the loss of grasses and forbs slowing decomposition, whereas the effects on belowground decomposition were rare and transient. Effects of plant identity on decomposition were consistent in both short‐ and long‐term decomposition studies indicating that the influences of identity on the decomposition environment remained consistent throughout the different stages of the decomposition process. Both fertilizer and fungicide treatments affected overall decomposition rate, but there were few interactions between these treatments and plant removals. Although current species loss is likely to be happening in concert with environmental changes, the role a species plays in determining ecosystem functions such as decomposition may not be context‐dependent in these northern environments, and this may provide greater predictive power in determining the effects of species loss with changing environments. Further, as plant identity shows significant effects on litter decomposition rates, the effects of current and predicted future biodiversity losses may depend specifically on which species are lost. 相似文献
13.
Experiments in a rewetted fen show large differences in root decomposition rates among Phragmites australis, Carex paniculata,
and Carex riparia. With equal water table fluctuations no differences in decomposition were observed in the two rewetting
variants, with temporary standing and constantly flowing water. The marked differences among species are therefore attributed
to differences in plant material quality, though C/N ratio is shown not to be of main influence. Based on low decomposition
rates, Phragmites australis proved the species most suitable for (renewed) peat accumulation under sufficient wet conditions.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
Plant species and nutritional-mediated control over rhizodeposition and root decomposition 总被引:7,自引:1,他引:7
Van der Krift Tanja A.J. Kuikman Peter J. Möller Frans Berendse Frank 《Plant and Soil》2001,228(2):191-200
This study focuses on the influence of nitrogen (N) availability and species on rhizodeposition and on decomposition of rhizodeposits, roots and soil organic matter. Four perennial grass species were studied that are characteristic of grassland habitats that differ in nutrient availability. These perennial grass species, Holcus lanatus L., Festuca rubra L., Anthoxanthum odoratum L. and Festuca ovina L., were homogeneously labeled with 14CO2. Plants were grown on soil without N addition and with N addition (14 g N m–2). After 8 weeks, plants were harvested and root production and the remaining amount of rhizodeposits in the soil were measured. 14C-labelled roots were incubated in fresh soil. Decomposition was measured of 1) the labeled rhizodeposits in the soil in which the plants had been growing and 2) the labeled dead roots incubated in fresh soil, by trapping the evolved 14CO2, over 69 days.In general, decomposability of both roots and rhizodeposits increased when nitrogen availability increased. Moreover, the species differed in their response to N. Higher N supply increased total rhizodeposition of H. lanatus and the decomposability of rhizodeposited carbon compounds of this high fertility species was greater than of the low fertility species F. ovina, but lower than of A. odoratum. The presented study gives no evidence for a relation between root decomposition rate and the nutrient availability of the habitat of the four species. Overall, we suggest on the basis of the results that species can affect nutrient cycling by differences in rates of rhizodeposition and litter production. This offers a mechanism whereby species can influence species replacement during succession. 相似文献
15.
Aboveground decomposition dynamics in riparian depression and slope wetlands of central Pennsylvania
We examined two types of groundwater-fed wetlands (riparian depressions and slopes) classified using the hydrogeomorphic (HGM) system. These wetland types had previously been shown to differ hydrologically. Our first objective was to determine if HGM was a useful structuring variable when examining aboveground decomposition dynamics (rate of mass loss and rate of nitrogen loss). Our second objective was to determine what soil variables were related to any differences in aboveground decomposition dynamics we might find regardless of HGM subclass. We used the litterbag field bioassay technique, and employed a standard litter type (Phalaris arundinacea) across all wetlands. Our results indicated that HGM would not readily serve as an adequate structuring variable for aboveground decomposition in riparian depressions and slope wetlands of central Pennsylvania. Discriminant analysis and classification and regression tree (CART) modeling found soil cation exchange capacity, soil pH, soil organic matter, and soil % nitrogen to be potentially important soil variables related to mass loss, and soil % nitrogen and soil pH to be potentially important variables related to nitrogen loss rate. 相似文献
16.
1. Urbanisation and landuse changes threaten the ecological integrity of rivers and streams globally. A major challenge in such impacted environments is to develop functional indicators for use by waterway managers. We first reviewed cellulose decomposition potential (CDP) as one such indicator, and here present current understanding and highlight the knowledge gaps which hinder its widespread incorporation into programmes monitoring stream health. In a field study, we also evaluated two differing cellulose materials (Shirley soil burial test material and unbleached calico) and measurement techniques. 2. We also investigated the effects of urbanisation and riparian cover on CDP as a standardised indicator of ecosystem function. Cotton fabrics were deployed in paired open and closed reaches across six stream catchments varying in degree of urbanisation (in south‐eastern Australia). After 7, 14 and 21 days materials were retrieved and their decomposition assessed in conjunction with a number of physicochemical variables. 3. We observed a strong positive relationship between the decomposition of Shirley and calico materials, thus indicating unbleached calico is an effective substitute for Shirley test cloth, which is no longer available. 4. Across sites, CDP was positively correlated with ammonium concentrations and also, to a lesser extent, with filterable reactive phosphorus and sediment silt and clay content/carbon availability. Despite these relationships, cellulose decomposition was not correlated with urbanisation or riparian cover. 5. Cellulose decomposition is a simple, rapid and sensitive functional indicator of water quality and associated anthropogenic landuse changes and is thus a valuable tool for monitoring stream health. 相似文献
17.
Background and Aims
We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species.Methods
In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson''s single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots.Key Results
From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations.Conclusions
Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. 相似文献18.
Nitrate depletion in the riparian zone and stream channel of a small headwater catchment 总被引:29,自引:1,他引:29
A. Bryce Cooper 《Hydrobiologia》1990,202(1-2):13-26
A mass balance procedure was used to determine rates of nitrate depletion in the riparian zone and stream channel of a small New Zealand headwater stream. In all 12 surveys the majority of nitrate loss (56–100%) occurred in riparian organic soils, despite these soils occupying only 12% of the stream's border. This disproportionate role of the organic soils in depleting nitrate was due to two factors. Firstly, they were located at the base of hollows and consequently a disproportionately high percentage (37–81%) of the groundwater flowed through them in its passage to the stream. Secondly, they were anoxic and high in both denitrifying enzyme concentration and available carbon. Direct estimates ofin situ denitrification rate for organic soils near the upslope edge (338 mg N m–2 h–1) were much higher than average values estimated for the organic soils as a whole (0.3–2.1 mg N m–2 h–1) and suggested that areas of these soils were limited in their denitrification activity by the supply of nitrate. The capacity of these soils to regulate nitrate flux was therefore under-utilized. The majority of stream channel nitrate depletion was apparently due to plant uptake, with estimates of thein situ denitrification rate of stream sediments being less than 15% of the stream channel nitrate depletion rate estimated by mass balance.This study has shown that catchment hydrology can interact in a variety of ways with the biological processes responsible for nitrate depletion in riparian and stream ecosystems thereby having a strong influence on nitrate flux. This reinforces the view that those seeking to understand the functioning of these ecosystems need to consider hydrological phenomena. 相似文献
19.
Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean Coast 总被引:6,自引:0,他引:6
Dissimilatory nitrate reductions in coastal marine sediment of Carteau Cove (French Mediterranean Coast) were studied between April 1993 and July 1994. Simultaneous determination of denitrification and dissimilatory nitrate reduction to ammonium was achieved by using a combination of acetylene blockage and 15N techniques. After short incubations (maximum 5 h), a part of 15N labelled nitrate added to the sediment was recovered as ammonium without incorporation in organic matter. The result indicate that a fraction of nitrate was reduced to ammonium by a dissimilatory mechanism instead of denitrifying. Denitrifying and nitrate ammonifying activities ranged from 0 to 19.8 μmol l-1 d-1 and from 2.3 to 83.2 μmol l-1 d-1, respectively. Denitrification rates were highest in early spring whereas nitrate ammonification were highest in fall. The recovery of nitrate reduced as N2O-N plus ammonium was between 40 and 100%, the highest nitrogen losses were recorded in July. Depending on the station and time of year denitrification accounted for between 0 and 43% of the total nitrate reduction whereas dissimilatory nitrate reduction to ammonium (DNRA) accounted for between 18 and 100%. The reduction rate data suggest that the pathway of nitrate reduction to ammonium may be important in coastal sediments. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献