首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments.  相似文献   

2.
The West African trypanosomoses are mostly transmitted by riverine species of tsetse fly. In this study, we estimate the dispersal and population size of tsetse populations located along the Mouhoun river in Burkina Faso where tsetse habitats are experiencing increasing fragmentation caused by human encroachment. Dispersal estimated through direct (mark and recapture) and indirect (genetic isolation by distance) methods appeared consistent with one another. In these fragmented landscapes, tsetse flies displayed localized, small subpopulations with relatively short effective dispersal. We discuss how such information is crucial for designing optimal strategies for eliminating this threat. To estimate ecological parameters of wild animal populations, the genetic measures are both a cost- and time-effective alternative to mark–release–recapture. They can be applied to other vector-borne diseases of medical and/or economic importance.  相似文献   

3.
West African riverine tsetse populations of Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) were investigated for gene flow, inferred from mitochondrial diversity in samples of 69 flies from Senegal and 303 flies from three river drainages in Mali. Four polymorphic mitochondrial loci were scored. Mean haplotype diversities were 0.30 in Mali, 0 in Senegal and 0.18 over both Mali and Senegal. These diversities estimate the probabilities that two randomly chosen tsetse have different haplotypes. Substantial rates of gene flow were detected among flies sampled along tributaries belonging to the river basins of the Senegal, Niger, and Bani in Mali. There was virtually no gene flow between tsetse in Senegal and Mali. No seasonal effects on gene flow were detected. The implications of these preliminary findings for the implementation of area-wide integrated pest management (AW-IPM) programmes against riverine tsetse in West Africa are discussed.  相似文献   

4.
The present study was carried out in order to investigate if there was really a failure of PCR in identifying parasitologically positive tsetse flies in the field. Tsetse flies (Glossina palpalis gambiensis and Glossina morsitans morsitans) were therefore experimentally infected with two different species of Trypanosoma (Trypanosoma brucei gambiense or Trypanosoma congolense). A total of 152 tsetse flies were dissected, and organs of each fly (midgut, proboscis or salivary glands) were examined. The positive organs were then analysed using PCR. Results showed that, regardless of the trypanosome species, PCR failed to amplify 40% of the parasitologically positive midguts. This failure, which does not occur with diluted samples, is likely to be caused by an inhibition of the amplification reaction. This finding has important implications for the detection and the identification of trypanosome species in wild tsetse flies.  相似文献   

5.
Trypanosoma brucei brucei, derived from the salivary glands of infected tsetse flies (Glossina morsitans morsitans) and maintained in culture for over 4 years, were infective to both albino rats and tsetse flies. Virulence was markedly enhanced during the first passage in albino rats or tsetse flies. Irradiated cultured trypanosomes induced immunity to homologous challenge but not to tsetse fly or blood-induced challenge with the same stock.  相似文献   

6.
Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments.  相似文献   

7.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

8.
9.
Abstract Teneral Glossina morsitans mositans, G.m.submorsitans, G.palpalis gambiensis and G.tachinoides were allowed to feed on rabbits infected with Trypanosoma congolense savannah type or on mice infected with T.congolense riverine-forest type. The four tsetse species and subspecies were also infected simultaneously in vitro on the blood of mice infected with the two clones of T.congolense via a silicone membrane. The infected tsetse were maintained on rabbits and from the day 25 after the infective feed, the surviving tsetse were dissected in order to determine the infection rates.
Results showed higher mature infection rates in morsitans-gwup tsetse flies than in palpalis-group tsetse flies when infected with the savannah type of T.congolense. In contrast, infection rates with the riverine-forest type of T.congolense were lower, and fewer flies showed full development cycle. The intrinsec vectorial capacity of G.m.submorsitans for the two T.congolense types was the highest, whereas the intrinsic vectorial capacity of G.p.gambiensis for the Savannah type and G.m.morsitans for the riverine-forest type were the lowest. Among all tsetse which were infected simultaneously with the two types of T.congolense , the polymerase chain reaction detected only five flies which had both trypanosome taxa in the midgut and the proboscis. All the other infections were attributable to the savannah type.
The differences in the gut of different Glossina species and subspecies allowing these two sub-groups of T.congolense to survive better and undergo the complete developmental cycle more readily in some species than other are discussed.  相似文献   

10.
Molecules in the midgut of tsetse flies (Diptera: Glossinidiae) are thought to play important roles in the life cycle of African trypanosomes by influencing initial parasite establishment and subsequent differentiation events that ultimately lead to maturation of mammal-infective trypanosomes. The molecular composition of the tsetse midgut is, therefore, of critical importance to disease transmission by these medically important vectors. In this study we compared protein expression profiles of midguts of the salmon mutant and wild type Glossina morsitans morsitans Westwood that display marked differences in their susceptibility to infection by African trypanosomes. Isotope coded affinity tag (ICAT) technology was used to identify 207 proteins including 17 that were up regulated and nine that were down regulated in the salmon mutants. Several of the up regulated molecules were previously described as tsetse midgut or salivary gland proteins. Of particular interest was the up regulation in the salmon flies of tsetse midgut EP protein, a recently described molecule with lectin-like activity that was also found to be induced in tsetse by bacterial challenge. The up regulation of the EP protein in midguts of salmon mutants was confirmed by two-dimensional gel electrophoresis and tandem mass spectrometry.  相似文献   

11.
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.  相似文献   

12.
Between November 1988 and July 1995 five technicians carried out ovarian dissections on 16,013 Glossina morsitans morsitans Westwood and 123,848 G. pallidipes Austen captured at Rekomitjie Research Station, Zambezi Valley, Zimbabwe. The ovarian age and uterine content were recorded, as were the lengths (l1, l2 and lu) of the largest and second largest oocyte, and of any uterine inclusion. Major abnormalities and abnormal spermathecal contents were found in <0.1% of all flies dissected. Apparent abortions rates varied significantly between dissectors and occurred at frequencies of 0.8–4.5% in G. m. morsitans and 0.3–2.8% in G. pallidipes. The lowest estimates give the best picture of the field situation. Abortion rates were higher in flies caught on electric nets than in trapped flies where the rate was only 0.15%, indicating that reproductive losses are negligible for most of the year at Rekomitjie. The rates did, however, increase to >2% when mean temperatures exceeded 27°C and flies were captured in artificial refuges. There was little effect of ovarian age on the abortion rate, but the frequency of empty uteri declined markedly with age – with a suggestion, however, that it might increase again in the oldest flies. A knowledge of the rates of reproductive loss is important for the construction of realistic models of the dynamics of tsetse populations.  相似文献   

13.
A means of contaminating tsetse flies in the field with fluorescent pigment powders has been developed, using pigment in open-ended plastic chambers at the cage position on traps. Glossina pallidipes Austen and G.morsitans morsitans Westwood passed rapidly through the chambers, and on exit were contaminated with consistent doses of powder: about 90 micrograms/fly when powder was presented on the chamber roof and about 28 micrograms/fly when powder was presented on the chamber floor. The technique automatically marks tsetse flies with pigment, cheaply, simply and with the minimum imposition of stress and is expected to be particularly useful in ecological studies. Its potential for marking other biting flies is discussed.  相似文献   

14.
Tsetse flies occupy discontinuous habitats and gene flow among them needs to be investigated in anticipation of area-wide control programs. Genetic diversities were estimated at six microsatellite loci in seven Glossina morsitans submorsitans Newstead (Diptera: Glossinidae) populations and five microsatellite loci in six G. m. morsitans Westwood populations. Nei's unbiased diversities were 0.808 and 76 alleles in G. m. submorsitans and 0.727 and 55 alleles in G. m. morsitans. Diversities were less in three laboratory cultures. Matings were random within populations. Populations were highly differentiated genetically. Populations were strongly subdivided, as indicated by fixation indices (F(ST)) of 0.18 in G. m. morsitans and 0.17 in G. m. submorsitans. 35% of the genetic variance in G. m. submorsitans was attributed to differences between populations from The Gambia and Ethiopia. All available genetic evidence suggests that genetic drift is much greater than gene flow among G. morsitans s.l. populations.  相似文献   

15.
Using green fluorescent protein as a reporter, we have shown that the strain 29-13 of Trypanosoma brucei, widely used for inducible down-regulation of mRNA, is inducible in, but not permissive for the tsetse flies Glossina palpalis gambiensis and Glossina morsitans morsitans. Within two weeks post-infection, 42% males and females of teneral and non-teneral tsetse flies harboured intestinal infections, yet not a single infection progressed into the salivary glands.  相似文献   

16.
Abstract. Host blood effects on Trypanosoma congolense establishment in Glossina morsitans morsitans and Glossina morsitans centralis were investigated using goat, rabbit, cow and rhinoceros blood. Meals containing goat erythrocytes facilitated infection in G. m. morsitans , whereas meals containing goat plasma facilitated infection in G. m. centralis. Goat blood effects were not observed in the presence of complementary rabbit blood components. N-acetyl-glucosamine (a midguMectin inhibitor) increased infection rates in some, but not all, blood manipulations. Cholesterol increased infection rates in G. m. centralis only. Both compounds together added to cow blood produced superinfection in G. m. centralis , but not in G. m. morsitans. Midgut protease levels did not differ 6 days post-infection in flies maintaining infections versus flies clearing infections. Protease levels were weakly correlated with patterns of infection, but only in G. m. morsitans. These results suggest that physiological mechanisms responsible for variation in infection rates are only superficially similar in these closely-related tsetse.  相似文献   

17.
Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.  相似文献   

18.
Many insects rely on the presence of symbiotic bacteria for proper immune system function. However, the molecular mechanisms that underlie this phenomenon are poorly understood. Adult tsetse flies (Glossina spp.) house three symbiotic bacteria that are vertically transmitted from mother to offspring during this insect's unique viviparous mode of reproduction. Larval tsetse that undergo intrauterine development in the absence of their obligate mutualist, Wigglesworthia, exhibit a compromised immune system during adulthood. In this study, we characterize the immune phenotype of tsetse that develop in the absence of all of their endogenous symbiotic microbes. Aposymbiotic tsetse (Glossina morsitans morsitans [Gmm(Apo)]) present a severely compromised immune system that is characterized by the absence of phagocytic hemocytes and atypical expression of immunity-related genes. Correspondingly, these flies quickly succumb to infection with normally nonpathogenic Escherichia coli. The susceptible phenotype exhibited by Gmm(Apo) adults can be reversed when they receive hemocytes transplanted from wild-type donor flies prior to infection. Furthermore, the process of immune system development can be restored in intrauterine Gmm(Apo) larvae when their mothers are fed a diet supplemented with Wigglesworthia cell extracts. Our finding that molecular components of Wigglesworthia exhibit immunostimulatory activity within tsetse is representative of a novel evolutionary adaptation that steadfastly links an obligate symbiont with its host.  相似文献   

19.
As dispersal plays a key role in gene flow among populations, its evolutionary dynamics under environmental changes is particularly important. The inter-dependency of dispersal with other life history traits may constrain dispersal evolution, and lead to the indirect selection of other traits as a by-product of this inter-dependency. Identifying the dispersal's relationships to other life-history traits will help to better understand the evolutionary dynamics of dispersal, and the consequences for species persistence and ecosystem functioning under global changes. Dispersal may be linked to other life-history traits as their respective evolutionary dynamics may be inter-dependent, or, because they are mechanistically related to each other. We identify traits that are predicted to co-vary with dispersal, and investigated the correlations that may constrain dispersal using published information on butterflies. Our quantitative analysis revealed that (1) dispersal directly correlated with demographic traits, mostly fecundity, whereas phylogenetic relationships among species had a negligible influence on this pattern, (2) gene flow and individual movements are correlated with ecological specialisation and body size, respectively and (3) routine movements only affected short-distance dispersal. Together, these results provide important insights into evolutionary dynamics under global environmental changes, and are directly applicable to biodiversity conservation.  相似文献   

20.
Salivary glands of tsetse flies (Diptera: Glossinidiae) contain molecules that are involved in preventing blood clotting during feeding as well as molecules thought to be intimately associated with trypanosome development and maturation. Here we present a protein microchemical analysis of the major soluble proteins of the salivary glands of Glossina morsitans morsitans, an important vector of African trypanosomes. Differential solubilization of salivary proteins was followed by reverse-phase, high-performance liquid chromatography (HPLC) and analysis of fractions by 1-D gel electrophoresis to reveal four major proteins. Each protein was subjected to amino acid microanalysis and N-terminal microsequencing. A protein chemical approach using high-resolution 2-D gel electrophoresis and mass spectrometry was also used to identify the salivary proteins. Matrix-assisted, laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and quadrupole time-of-flight (Q-TOF) tandem mass spectrometry methods were used for peptide mass mapping and sequencing, respectively. Sequence information and peptide mass maps queried against the NCBI non-redundant database confirmed the identity of the first protein as tsetse salivary gland growth factor-1 (TSGF-1). Two proteins with no known function were identified as tsetse salivary gland protein 1 (Tsal 1) and tsetse salivary gland protein 2 (Tsal 2). The fourth protein was identified as Tsetse antigen-5 (TAg-5), which is a member of a large family of anti-haemostatic proteins. The results show that these four proteins are the most abundant soluble gene products present in salivary glands of teneral G. m. morsitans. We discuss the possible functions of these major proteins in cyclical transmission of African trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号