首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many BRCA1-related tumors have a distinct histological characteristics which together have been called “basal-like”. Typically such tumors are ER-, HER2- and express cytokeratin 5/6, cytokeratin 8/18, EGFR and vimentin. These characteristics can be used to predict which breast cancers are most likely to be associated with germline BRCA1 mutations which has important implications for breast pathologists. Moreover, BRCA1-related breast cancers generally have a poorer prognosis which may paradoxically be more pronounced in node negative cancers. This may relate in part to a different pattern of metastatic spread with in increased frequency of brain and lung metastases in BRCA1 carriers. Conversely, BRCA1-related tumors may respond better to neoadjuvant chemotherapy and their characteristic molecular signature may provide opportunities to develop specific molecular targeted therapies akin to traztuzumab in HER2+ cancers. Finally, many of the phenotypic features of BRCA1-related tumors might also be found in putative breast stem cells and therefore characterization of the BRCA1 breast cancer phenotype will improve our understanding of sporadic breast carcinogenesis.  相似文献   

2.
BRCA1 gene in breast cancer   总被引:10,自引:0,他引:10  
  相似文献   

3.
BRCA1 is a tumour suppressor gene (TSG), which predisposes cancer to both breast and ovary. The primary objective of the present study is to ascertain the involvement of BRCA1 gene in the pathogenesis of sporadic breast cancer women in Chennai (South India) by analysing its protein expression by immunohistochemistry (IHC) and loss of heterozygosity (LOH) for confirmation of the involvement of TSG in the study population. We found down regulation of BRCA1 protein (54%) in IHC and it was correlated with the clinicopathological parameters of the patients. We found near significant correlation (P < 0.063) between BRCA1 protein expression and clinicopathological parameters. We found 30% LOH in our study and it was also correlated with the clinicopathological parameters. No correlation was found between LOH and clinicopathological parameters. Though we found no correlation, the results revealed in this study support the involvement of BRCA1 TSG in the pathogenesis of sporadic breast cancer women in Chennai (South India).  相似文献   

4.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

5.
BACKGROUND: Germline mutations in BRCA1/2 greatly elevate risks of breast and ovarian cancers, but the role of these genes in tumourigenesis of other cancer types is still being investigated. OBJECTIVE: We report on an investigation of BRCA1/2 mutations and their loss of heterozygosity (LOH) in a patient with a strong family history of breast cancer who was diagnosed with consecutive primary cervical, ovarian and lung carcinomas. METHODS AND RESULTS: BRCA1/2 mutation screening of the proband revealed a common familial breast- and ovarian cancer-associated germline BRCA2 mutation (3034del4bp). We then performed LOH analysis for BRCA2 in lung adenocarcinoma tissue of the patient. Using the laser-capture microdissection (LCM) technique, we obtained pure populations of neoplastic cells from which DNA could be extracted. Mutation analysis by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing revealed loss of the mutant allele in the adenocarcinoma tumour tissue. CONCLUSION: To our knowledge, this is the first report of investigation for LOH for BRCA2 in primary lung adenocarcinoma tissue of a patient with multiple primary tumours related to a familial germline BRCA2 mutation. Interestingly, it was the mutant, not the wild-type, allele which was lost in the lung adenocarcinoma tissue.  相似文献   

6.
It is increasingly apparent that normal and malignant breast tissues require complex local and systemic stromal interactions for development and progression. During development, mammary cell fate specification and differentiation require highly regulated contextual signals derived from the stroma. Likewise, during breast carcinoma development, the tissue stroma can provide tumor suppressing and tumor-promoting environments that serve to regulate neoplastic growth of the epithelium. This review focuses on the role of the stroma as a mediator of normal mammary development, as well as a critical regulator of malignant conversion and progression in breast cancer. Recognition of the important role of the stroma during the progression of breast cancers leads to the possibility of new targets for treatment of the initial breast cancer lesion as well as prevention of recurrence.  相似文献   

7.
8.
To investigate microsatellite instability (MSI) and loss of heterozygosity (LOH) of locus D17S396, D17S579 and D17S855, and their effect on the expression of nm23H1 and BRCA1 of gastric cancer, which would provide experimental basis for clinical treatment and prognosis analysis of gastric cancer. DNA was extracted from paraffin-embedded materials. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to analyze MSI and LOH. Expression of nm23H, and BRCA1 was detected by Envision immuno-histochemistry and Leica-Qwin computer imaging techniques. In the forty cases of gastric cancer, the frequency of MSI, LOH and nm23H1 protein were 20.00%, 17.50% and 55.00% respectively at locus D17S396, while at locus D17S579, the frequency of MSI, LOH and BRCA1 protein were 22.50%, 15.00% and 37.50% respectively; at locus D17S855, the frequency of MSI, LOH and BRCA1 of thirty-seven cases were 18.92%, 18.92%, 37.84% respectively. In tumor node metastasis (TNM) staging, at locus D17S396, D17S579 and D17S855, MSI in stages I + II appeared more frequently than that in stages III + IV, while LOH appeared the contrary tendency. In the group of metastasis of gastric cancer, MSI had a less frequency (5.00%) than that with no metastasis (35.00%, P < 0.05) at locus D17S396, but LOH appeared more frequently (30.00%) than that with no metastasis (5.00%, P < 0.05). At locus D17S579, MSI had an increasing tendency with the degree of tumor differentiation (50.00% in high differentiation cases, 20.00% in middle differentiation cases, and 0% in low differentiation cases, P < 0.05). The frequency of nm23H1 and BRCA1 protein in stages TNM I + II was higher than that in stages TNM III + IV; and that in higher differentiation cases was higher than in poor differentiation cases. The frequency of nm23H1 protein in the group of metastasis (30.00%) was less than that with no metastasis significantly (80.00%, P<0.01). The frequency of nm23H1 protein in the group positive to MSI (87.50%) was higher than that in the group negative to MSI (46.88%, P < 0.05). However, nm23H1 protein in group positive to LOH (14.29%) was lower than that in the group negative to LOH (63.64%, P < 0.05). The frequency of BRCA1 protein in the group positive to MSI (66.67%) was more than that in the group negative to MSI (29.03%, P < 0.05). The results of experiments indicate that MSI and LOH may separately control the development of sporadic colon cancer with different pathways. MSI may be an early period molecule marker for sporadic colon cancer, enhanced expression of nm23H1 protein can effectively inhibit colon cancer metastasis and improve prognosis of sporadic colon cancer patients. By comparison, LOH mostly arises in the late period of sporadic colon cancer and endows a high aggressive and poor prognostic phenotype. nm23H1 protein could effectively restrain gastric cancer metastasis and development; and BRCA1 protein could restain tumor from becoming lower differentiation.  相似文献   

9.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers.  相似文献   

10.
Structural determinants of BRCA1 translational regulation   总被引:4,自引:0,他引:4  
  相似文献   

11.
A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors.  相似文献   

12.
The BRCA1 and BRCA2 gene products are believed to play an important part in the onset and/or development of many sporadic mammary cancers. Recently, it has been reported that these two proteins contribute to a centrosome function which is believed to help maintain the integrity of the chromosome segregation process. This may mean a reduced level of the BRCA1 or BRCA2 protein in mammary cells will occasionally lead to nondisjunctional chromosomal loss or gain. We now report that spontaneous micronuclei arising from chromosome(s) which fail to be incorporated into the relevant daughter nuclei during mitosis tend to occur more frequently in BRCA1- or BRCA2-defective human cancer cells than in BRCA-positive cancer cells. Some cases of mammary carcinogenesis may therefore stem from the loss of integrity of chromosome segregation in cells which have a reduced capacity to express either BRCA1 or BRCA2.  相似文献   

13.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.  相似文献   

14.

Introduction

Novel breast cancer risk-reducing strategies for individuals with germline mutations of the BRCA1 and/or BRCA2 genes are urgently needed. Identification of antigenic targets that are expressed in early cancers, but absent in normal breast epithelium of these high-risk individuals, could provide the basis for the development of effective immunoprophylactic strategies. Cancer testis (CT) antigens are potential candidates because their expression is restricted to tumors, and accumulating data suggest that they play important roles in cellular proliferation, stem cell function, and carcinogenesis. The objective of this study was to examine the expression of CT antigens and their frequency in BRCA-associated breast cancers.

Methods

Archived breast cancer tissues (n?=?26) as well as morphologically normal breast tissues (n?=?7) from women carrying deleterious BRCA 1 and/or 2 mutations were obtained for antigen expression analysis by immunohistochemistry. Expression of the following CT antigens was examined: MAGE-A1, MAGE-A3, MAGE-A4, MAGE-C1.CT7, NY-ESO-1, MAGE-C2/CT10, and GAGE.

Results

CT antigens were expressed in 16/26 (61.5%, 95% CI 43?C80%) of BRCA-associated cancers, including in situ tumors. Thirteen of twenty-six (50%) breast cancers expressed two or more CT antigens; three cancers expressed all seven CT antigens. MAGE-A was expressed in 13/26 (50%) of cancers, NY-ESO-1 was expressed in 10/26 (38%) of tumors. In contrast, none of the CT antigens were expressed in adjacent or contralateral normal breast epithelium (P?=?0.003).

Conclusions

We report a high CT antigen expression rate in BRCA-associated breast cancer as well as the lack of expression of these antigens in benign breast tissue of carriers, identifying CT antigens as potential vaccine targets for breast cancer prevention in these high-risk individuals.  相似文献   

15.
16.
17.
Sporadic basal-like cancers (BLCs) are a common subtype of breast cancer that share multiple biological properties with BRCA1-mutated breast tumors. Despite being BRCA1+/+, sporadic BLCs are widely viewed as phenocopies of BRCA1-mutated breast cancers, because they are hypothesized to manifest a BRCA1 functional defect or breakdown of a pathway(s) in which BRCA1 plays a major role. The role of BRCA1 in the repair of double-strand DNA breaks by homologous recombination (HR) is its best understood function and the function most often implicated in BRCA1 breast cancer suppression. Therefore, it is suspected that sporadic BLCs exhibit a defect in HR. To test this hypothesis, multiple DNA damage repair assays focused on several types of repair were performed on a group of cell lines classified as sporadic BLCs and on controls. The sporadic BLC cell lines failed to exhibit an overt HR defect. Rather, they exhibited defects in the repair of stalled replication forks, another BRCA1 function. These results provide insight into why clinical trials of poly(ADP-ribose) polymerase (PARP) inhibitors, which require an HR defect for efficacy, have been unsuccessful in sporadic BLCs, unlike cisplatin, which elicits DNA damage that requires stalled fork repair and has shown efficacy in sporadic BLCs.  相似文献   

18.
Establishing a model system that more accurately recapitulates both normal and neoplastic breast epithelial development in rodents is central to studying human breast carcinogenesis. However, the inability of human breast epithelial cells to colonize mouse mammary fat pads is problematic. Considering that the human breast is a more fibrous tissue than is the adipose-rich stroma of the murine mammary gland, our group sought to bypass the effects of the rodent microenvironment through incorporation of human stromal fibroblasts. We have been successful in reproducibly recreating functionally normal breast tissues from reduction mammoplasty tissues, in what we term the human-in-mouse (HIM) model. Here we describe our relatively simple and inexpensive techniques for generating this orthotopic xenograft model. Whether the model is to be applied for understanding normal human breast development or tumorigenesis, investigators with minimal animal surgery skills, basic cell culture techniques and access to human breast tissue will be able to generate humanized mouse glands within 3 months. Clearing the mouse of its endogenous epithelium with subsequent stromal humanization takes 1 month. The subsequent implantation of co-mixed human epithelial cells and stromal cells occurs 2 weeks after humanization, so investigators should expect to observe the desired outgrowths 2 months afterward. As a whole, this model system has the potential to improve the understanding of crosstalk between tissue stroma and the epithelium as well as factors involved in breast stem cell biology tumor initiation and progression.  相似文献   

19.
Enhanced genomic instability has been recently reported in normal cells derived from BRCA1/2 mutation carriers when placed in vitro in non-physiological stress conditions. We present here original data which help to explain the observed genomic instability. Leucocytes from BRCA1/2 mutation carriers, sporadic breast cancer patients and controls were prepared for BRCA1 immunocytochemistry. We show that BRCA1 containing nuclear dot like structures are detectable in about 80% of the leucocytes from controls and sporadic breast cancer patients, but are absent in the majority of normal cells from BRCA1 as well as BRCA2 mutation carriers (also in their normal breast cells). Our results thus indicate that the genomic instability observed in normal cells from BRCA1 and BRCA2 mutation carriers is associated with a down-regulation of nuclear BRCA1 protein accumulation in the dot like structures. These results suggest in addition that immunocytochemical or alternative molecular screening strategies might help to identify women with a high risk for breast (ovarian) cancer even when the underlying genetic defect remains undetectable.  相似文献   

20.
Germline alterations of the BRCA1 tumor suppressor gene have been implicated at least in half of familial breast cancers. Nevertheless, in sporadic breast cancer no mutation of this gene has been characterized to date. In sporadic breast tumors, other BRCA1 gene loss of function mechanisms, such as down-regulation of gene expression, have been suggested. In an effort to better understand the relationship between BRCA1 expression and malignant transformation, we have adapted the new real-time quantitative PCR method based on a 5' nuclease assay and the use of doubly labeled fluorescent TaqMan probes to quantify BRCA1 mRNA. We have compared expression of BRCA1 mRNA with or without exon 11 in the normal breast epithelial cell line MCF10a and in three cancer cell lines (MCF-7, MDA-MB231 and HBL100) by comparing two methods of quantification: the comparative C(T) and the standard curve. We found that the full length BRCA1 mRNA, which encodes the functional nuclear protein, was down-regulated in tumor cells when compared with MCF10a cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号