首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E) 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.  相似文献   

5.
Neural crest (NC) cells may be involved in kidney organogenesis by providing inductive signals and contributing to cells of the renal stroma. We show here that the lumbo-sacral NC cells fate mapped with the aid of Wnt-1 promoter in the mouse migrate close to the metanephros at the initiation of organogenesis but these cells remain superficial to the condensed Pax2-expressing mesenchymal cells. NC-derived cells enter later into the kidney proper from the midline region. The NC cells contribute also to development of the extra-adrenal para-aortic bodies, Zuckerkandl's bodies and the nerve cord of the sympathetic nervous system. Splotch (Sp2H/Sp2H) embryos, having a NC defect in the lumbo-sacral region, develop a normal metanephros even though the kidney does not express the NC markers Sox10, Phox2b and tyrosine hydroxylase. Consistent with the histological findings, the kidneys of Sp2H/Sp2H embryos also express the stromal genes Foxd1, Hoxa10 and RARβ normally. Wnt-1 promoter-marked wild-type LacZ NC cells migrate intensely from the heterologous inducer tissue of the embryonic dorsal spinal cord (SPC) to the kidney mesenchyme, but tubule induction does not depend on NC migration, since the Sp2H/Sp2H SPC also induces tubulogenesis. The Sp2H/Sp2H mesenchyme also remains competent for tubulogenesis. We conclude that the NC cells fate mapped with the aid of Wnt-1 promoter migrate to the close to the metanephros and form later derivatives integrating with the kidney, but they may not be essential to the development of the stromal cells nor they may provide critical morphogenetic signals to regulate early kidney development in vivo.  相似文献   

6.
The carbon source markedly influenced the qualitative and quantitative composition of cellular hydrocarbons in Cladosporium resinae. Total lipid and hydrocarbon content was greater in cells grown on n-alkanes than in cells grown on glucose or glutamic acid. Glucose-grown cells contained a spectrum of aliphatic hydrocarbons from C7 to C36; pristane and n-hexadecane comprised 98% of the total. Cells grown on glutamic acid contained C7 to C23 hydrocarbons; n-tridecane, n-tetradecane, n-hexadecane, and pristane made up 74% of the total. n-Decane-grown cells yielded C8 to C32 compounds, and n-hexadecane (96%) was the major hydrocarbon. Cells grown on individual n-alkanes from C11 to C15 all contained C11 to C28 hydrocarbons, and cells grown on n-hexadecane contained C11 to C32 hydrocarbons. In n-undecane-grown cells, n-hexadecane and pristane made up 92% of the total, but in cells grown on C12 to C16 n-alkanes the major cellular hydrocarbon was the one on which the cells were grown. This suggests that cells cultured on n-alkanes of C12 or longer accumulate n-alkanes prior to oxidizing them.  相似文献   

7.
The cultured cells of Nicotiana tabacum (white cells) converted regioselectively exogenous 2-, 3-, and 4-hydroxybenzyl alcohols into corresponding hydroxybenzyl-β-d-glucopyranoside. (RS)-1-Phenylethanol having chiral center in its substituent was also glucosylated to give 1-phenylethyl-β-d-glucopyranoside by the cultured cells of N. tabacum (white and green cells) and Catharanthus roseus. The glucosylation with the green cells of N. tabacum occurred enantioselectively to give the glucoside of (S)-alcohol preferentially, while the glucosylation with the white cells of N. tabacum and the C. roseus cells gave preferentially the glucoside of (R)-alcohol.  相似文献   

8.
TGFβ family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFβ family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGFβ family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty1, TGFβ1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFβ family (ACTIVINA, NODAL, LEFTY1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells. Thus, in mouse and human nullipotent teratocarcinoma cells, the expression of ActivinA is significantly reduced compared with embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.  相似文献   

9.
Skeletal muscle satellite cells play a critical role during muscle growth, homoeostasis and regeneration. Selective induction of the muscle determination genes Myf5, Myod and Mrf4 during prenatal development can potentially impact on the reported functional heterogeneity of adult satellite cells. Accordingly, expression of Myf5 was reported to diminish the self-renewal potential of the majority of satellite cells. In contrast, virtually all adult satellite cells showed antecedence of Myod activity. Here we examine the priming of myogenic cells by Mrf4 throughout development. Using a Cre-lox based genetic strategy and novel highly sensitive Pax7 reporter alleles compared to the ubiquitous Rosa26-based reporters, we show that all adult satellite cells, independently of their anatomical location or embryonic origin, have been primed for Mrf4 expression. Given that Mrf4Cre and Mrf4nlacZ are active exclusively in progenitors during embryogenesis, whereas later expression is restricted to differentiated myogenic cells, our findings suggest that adult satellite cells emerge from embryonic founder cells in which the Mrf4 locus was activated. Therefore, this level of myogenic priming by induction of Mrf4, does not compromise the potential of the founder cells to assume an upstream muscle stem cell state. We propose that embryonic myogenic cells and the majority of adult muscle stem cells form a lineage continuum.  相似文献   

10.
An approach of biomass estimation of yeast fed-batch cultivation is proposed. It is based on the model that takes into account the information about the morphophysiological parameters: size, coefficients of shape and skewness of optical density of yeast cells. Procedure for parameter identification of the model, r 1-rate of transformation of active cells into weakened cells, r 2-rate of transformation of weakened cells into dead cells, r 3-rate of transformation of weakened cells into active cells, r 4-rate by which the buds of the budding cells grow and transform after their separation into active cells and r 5-rate of transformation of active cells into budding cells, is described. The procedure is performed in MATLAB environment.  相似文献   

11.
The study of symbiont cells lost from bleached scleractinian corals Acropora hyacinthus, Favites complanata, and Porites solida and octocorals Sarcophyton ehrenbergi, Sinularia sp., and Xenia sp. using flow cytometry shows that Symbiodinium die from either apoptosis or necrosis. Despite the majority of lost Symbiodinium cells being viable at 28 °C, the predominance of apoptotic and necrotic symbiont cells at higher temperatures indicates that the proportion of live cells decreases with increasing temperature. This implies that reinfection of corals at high temperatures by Symbiodinium lost from scleractinian corals may be less frequent than previously described, since many of the symbiont cells exhibit nonreversible symptoms of approaching cell death. The fraction of viable Symbiodinium cells lost from S. ehrenbergi, Xenia sp., and Sinularia at 32 °C was greater than that at 28 °C. At 34 °C, the fraction of viable cells lost from S. ehrenbergi and Xenia sp. fell but not from Sinularia sp., which suggests that their symbionts have higher temperature tolerances. Thus, Symbiodinium from octocorals may represent “pools” of genetically resistant symbionts available for reinfection of other reef organisms. This has been proposed previously for Symbiodinium in some scleractinian corals, but this is the first evidence for such, particularly for an octocoral. Many of the viable cells, determined using Trypan blue staining techniques, are in fact actually undergoing apoptosis or necrosis, when examined using Annexin V-fluor and propidium iodide staining profiles. The characterization of more apoptotic and necrotic cells than viable cells is critical, as this indicates that the loss of Symbiodinium cells cannot be beneficial to other bleached corals for symbiotic reassociation.  相似文献   

12.
13.
DEAE-cellulose-purified Trypanosoma lewisi from 4-day (dividing trypanosomes) and 7-day (non-dividing trypanosomes) infections in rats were compared for initial uptake of glucose, leucine, and potassium. Glucose entered the parasitic cells by mediated (saturable) processes, whereas leucine and K+ entered by mediated processes and diffusion. Glucose entry was significantly elevated in 4-day cells (Vmax 4.00 ± 1.02 nmoles/ 1 × 108 cells/min) with respect to 7-day cells (Vmax 1.83 ± 0.62 nmoles 1 × 108 cells/min). Likewise, the affinity of the glucose carrier was significantly greater in 4-day cells (Km = 0.30 ± 0.02 mM) than in 7-day cells (Km = 0.59 ± 0.11 mM). When leucine and K+ transport were compared in 4- and 7-day populations, significant elevations in the rate of entry (Vmax) of both substrates were observed for 4-day cells; Km values for leucine and K+ were not altered by the stage of infection. For leucine, the Vmax and Km for 4-day cells were 2.40 ± 0.50 nmoles/1 × 108 cells/30 sec and 78 ± 7 μM, respectively; corresponding values in 7-day cells were 1.06 ± 0.02 nmoles/1 × 108 cells/30 sec and 66 ± 11 μM. For K+, the Vmax and Km for 4-day cells were 15.97 ± 0.38 nmoles/1 × 108 cells/min and 1.2 mM, respectively; corresponding values in 7-day cells were 4.76 ± 1.82 nmoles/1 × 108 cells/min and 1.05 mM. The observed increase in the rate of K+ entry into 4-day cells was attributable to enhanced influx; no significant difference in the rate of K+ efflux was noted when 4- and 7-day cells were compared (t12 of K+ leak for 4- and 7-day cells were 68.1 ± 9.3 and 67.9 ± 15.2 min, respectively). Potassium influx was ouabain insensitive. Membrane function in 7-day cells was not uniformly inhibited. No significant difference in the activity of the membrane-bound enzyme, 5′-nucleotidase, was observed when 4- and 7-day cells were compared.  相似文献   

14.
Phospholipase A2 (PLA2)-activating protein (PLAA) is a novel signaling molecule that regulates eicosanoid production and participates in inflammatory responses. In our current study, we revealed that PLAA production was induced by the chemotherapeutic drug cisplatin in HeLa cervical carcinoma cells. To determine the potential pro-apoptotic effects of PLAA induction by cisplatin, we utilized HeLa (Tet-off) cells overexpressing the plaa gene (plaa high) and compared them with control (plaa low) cells, which produce endogenous plaa from the chromosome. Cisplatin-stimulated plaa high cells contained significantly higher levels of DNA fragmentation, caspase 3, 8 and 9 activities, PLA2 enzyme activity, and cytochrome c leakage from mitochondria than did the cisplatin-stimulated plaa low cells. Importantly, siRNA against PLAA (siRNA–PLAA) reduced the levels of cisplatin-induced PLAA, DNA fragmentation, and PLA2 activation, while promoting cell viability in both plaa high and plaa low cells. Cisplatin-induced-cytochrome c leakage in plaa high cells was reduced by siRNA–PLAA and restored by the addition of exogenous arachidonic acid (AA), suggesting to us that PLAA induction by cisplatin promoted cytochrome c leakage/mitochondrial damage partially by accumulating AA. In addition, cisplatin-stimulated plaa high cells produced less cytoprotective clusterin than did the cisplatin-stimulated plaa low cells, and siRNA–PLAA promoted clusterin production from both plaa high and plaa low cells. We showed that clusterin reduced DNA fragmentation in cisplatin-stimulated plaa high and plaa low cells, which is consistent with the notion that clusterin promotes cancer chemoresistance. Furthermore, cisplatin-stimulated plaa high cells produced more IL-32 (a pro-apoptotic protein) than did cisplatin-stimulated plaa low cells, and siRNA–PLAA reduced IL-32 production from both plaa high and plaa low cells. Finally, our proteomic analysis revealed that cisplatin-stimulated plaa high cells contained higher levels of phosphorylated JNK/c-Jun and FasL than did plaa low cells treated the same way. In summary, our data indicated that PLAA induction enhanced cisplatin-induced-apoptosis through four pathways, namely by: 1) accumulation of AA and mitochondrial damage, 2) downregulation of the cytoprotective clusterin, 3) upregulation of the pro-apoptotic IL-32, and 4) induction of JNK/c-Jun signaling and FasL expression.  相似文献   

15.
We previously showed that injury by partial duct ligation (PDL) in adult mouse pancreas activates Neurogenin 3 (Ngn3)+ progenitor cells that can differentiate to β cells ex vivo. Here we evaluate the role of Ngn3+ cells in β cell expansion in situ. PDL not only induced doubling of the β cell volume but also increased the total number of islets. β cells proliferated without extended delay (the so-called ‘refractory'' period), their proliferation potential was highest in small islets, and 86% of the β cell expansion was attributable to proliferation of pre-existing β cells. At sufficiently high Ngn3 expression level, upto 14% of all β cells and 40% of small islet β cells derived from non-β cells. Moreover, β cell proliferation was blunted by a selective ablation of Ngn3+ cells but not by conditional knockout of Ngn3 in pre-existing β cells supporting a key role for Ngn3+ insulin cells in β cell proliferation and expansion. We conclude that Ngn3+ cell-dependent proliferation of pre-existing and newly-formed β cells as well as reprogramming of non-β cells contribute to in vivo β cell expansion in the injured pancreas of adult mice.  相似文献   

16.
17.
18.
Yeast cells lacking the mitochondrial NADH kinase encoded by POS5 display increased sensitivity to hydrogen peroxide, a slow-growth phenotype, reduced mitochondrial function and increased levels of mitochondrial protein oxidation and mtDNA mutations. Here we examined gene expression in pos5Δ cells, comparing these data to those from cells containing deletions of superoxide dismutase-encoding genes SOD1 or SOD2. Surprisingly, stress–response genes were down-regulated in pos5Δ, sod1Δ and sod2Δ cells, implying that cells infer stress levels from mitochondrial activity rather than sensing reactive oxygen species directly. Additionally, pos5Δ, but not sod1 or sod2, cells displayed an anaerobic expression profile, indicating a defect in oxygen sensing that is specific to pos5, and is not a general stress–response. Finally, the pos5Δ expression profile is quite similar to the hap1Δ expression profile previously reported, which may indicate a shared mechanism.  相似文献   

19.
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA cells. Similar to aprA cells, rblA cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号