首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3) H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3) H]-sphingomyelin-derived [(3) H]-ceramide and depletion of [(3) H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3) H]-sphingosine-derived [(3) H]-ceramide and attenuation of [(3) H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3) H]-sphingosine derived from [(3) H]-sphingomyelin/LDL or [(3) H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3) H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.  相似文献   

2.
The phospholipids of lipoproteins can be transferred to cells by an endocytosis-independent uptake pathway. We analyzed the role of scavenger receptor BI (SR-BI) for the selective cellular phospholipid import. Human monocytes rapidly acquired the pyrene (py)-labeled phospholipids sphingomyelin (SM), phosphatidylcholine, and phosphatidylethanolamine from different donors (low and high density lipoproteins (LDL, HDL), lipid vesicles). The anti-SR-BI antibody directed against the extracellular loop of the membrane protein lowered the cellular import of the phospholipids by 40-80%. The phospholipid transfer from the lipid vesicles into the monocytes was suppressed by LDL, HDL, and apoprotein AI. Transfection of BHK cells with the cDNA for human SR-BI enhanced the cellular import of the vesicle-derived py-phospholipids by 5-6-fold. In the case of the LDL donors, transfer of py-SM to the transfected cells was stimulated to a greater extent than the uptake of the other py-phospholipids. Similar differences were not observed when the vesicles and HDL were used as phospholipid donors. The concentration of LDL required for the half-maximal phospholipid import was close to the previously reported apparent dissociation constant for LDL binding to SR-BI. The low activation energy of the SR-BI-mediated py-phospholipid import indicated that the transfer occurs entirely in a hydrophobic environment. Disruption of cell membrane caveolae by cyclodextrin treatment reduced the SR-BI-catalyzed incorporation of py-SM, suggesting that intact caveolae are necessary for the phospholipid uptake. In conclusion, SR-BI mediates the selective import of the major lipoprotein-associated phospholipids into the cells, the transfer efficiency being dependent on the structure of the donor lipoprotein.  相似文献   

3.
We examined the formation of sphingolipid mediators in platelets, which abundantly store, and release extracellularly, sphingosine 1-phosphate (Sph-1-P). Challenging [(3)H]Sph-labeled platelet suspensions with thrombin or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a decrease in Sph-1-P formation and an increase in sphingosine (Sph), ceramide (Cer), and sphingomyelin formation. Sph conversion into Cer, and Cer conversion into sphingomyelin were not affected upon activation, suggesting that Sph-1-P dephosphorylation may initiate the formation of sphingolipid signaling molecules. In fact, Sph-1-P phosphatase (but not lyase) activity was detected in platelets, but this activity was not enhanced by thrombin or TPA. When quantified with [(3)H]acetic anhydride acetylation, followed by HPLC separation, the amounts of Sph-1-P and Sph decreased and increased, respectively, upon stimulation with thrombin or TPA, and these changes were attenuated by staurosporine. Under these TPA treatment conditions, over half of the [(3)H]Sph-1-P (formed in platelets incubated with [(3)H]Sph) was detected extracellularly, possibly due to its release from platelets, which was completely inhibited by staurosporine pretreatment. Furthermore, when TPA-induced Sph-1-P release was blocked by staurosporine after the stimulation, the extracellular [(3)H]Sph-1-P radioactivity decreased, suggesting that the Sph-1-P released may undergo dephosphorylation extracellularly. To support this, [(32)P]Sph-1-P, when added extracellularly to platelet suspensions, was rapidly degraded, possibly due to the ecto-phosphatase activity. Our results suggest the presence in anucleate platelets of a transmembrane cycling pathway starting with Sph-1-P dephosphorylation and leading to the formation of other sphingolipid mediators.  相似文献   

4.
We have investigated the intervesicular transfer of galactosylceramide between unilamellar bilayer vesicles composed of differing sphingomyelin and phosphatidylcholine molar ratios. To monitor glycolipid transfer from donor to acceptor vesicles, we used a fluorescence resonance energy transfer assay involving anthrylvinyl-labeled galactosylceramide (AV-GalCer) and perylenoyl-labeled triglyceride. The transfer was mediated by glycolipid transfer protein (GLTP), purified from bovine brain and specific for glycolipids. The initial transfer rate and the total accessible pool of glycolipid in the donor vesicles were both measured. An increase in the sphingomyelin content of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) vesicles decreased the transfer rate in a nonlinear fashion. Decreased transfer rates were clearly evident at sphingomyelin mole fractions of 0.22 or higher. The pool of AV-GalCer available for GLTP-mediated transfer also was smaller in vesicles containing high sphingomyelin content. In contrast, AV-GalCer was more readily transferred from vesicles composed of POPC and different disaturated phosphatidylcholines. Our results show that GLTP acts as a sensitive probe for detecting interactions of glycosphingolipids with neighboring lipids and that the lateral mixing of glycolipids is probably affected by the matrix lipid composition. The compositionally driven changes in lipid interactions, sensed by GLTP, occur in membranes that are either macroscopically fluid-phase or gel/fluid-phase mixtures. Gaining insights into how changes in membrane sphingolipid composition alter accessibility to soluble proteins with affinity for membrane glycolipids is likely to help increase our understanding of how sphingolipid-enriched microdomains (i.e., "rafts" and caveolae) are formed and maintained in cells.  相似文献   

5.
6.
We have investigated the effects of lipoproteins on sphingolipid metabolism in proximal renal tubular cells from normal subjects and low density lipoprotein (LDL) receptor-negative homozygous familial hypercholesterolemic subjects employing radioactive precursors, e.g. [3H]serine, [3H]glucose, and [14C]galactose. Compared to cells incubated with lipoprotein-deficient serum, maximum suppression (70-80%) of incorporation of [3H]glucose and [3H]serine into ceramide and LacCer occurred when the LDL concentration in the medium was 25 micrograms/ml medium, and addition of higher amounts of LDL (up to 500 micrograms/ml medium) to normal cells did not produce further suppression. In contrast, high density lipoproteins did not suppress the incorporation of [3H]glucose into lactosylceramide (LacCer) in normal cells. The incorporation of [14C] galactose into LacCer was also suppressed by LDL (50% suppression at a concentration of 100 micrograms/ml medium). In contrast, LDL modified by reductive methylation of lysine residues did not suppress the incorporation of [3H]glucose into LacCer and the incorporation of [3H]serine into ceramide, whereas, native LDL exerted a concentration-dependent suppression of [3H]serine incorporation into ceramide and sphingomyelin in normal cells. At high concentrations of LDL (50-500 micrograms/ml medium), the incorporation of [3H]glucose and [14C]galactose into LacCer in homozygous FH cells was stimulated approximately 2-fold. Maximum stimulation of [3H]serine incorporation into ceramides, LacCer, and sphingomyelin occurred at 100 micrograms LDL/ml medium. Our studies indicate that the endogenous synthesis of sphingolipids in normal renal cells is regulated by the LDL receptor. Modification of the lysine residues in LDL by reductive methylation results in the inability to suppress sphingolipid synthesis in normal cells. Lack of LDL receptors, as in the case of homozygous FH cells, results in the lack of suppression of endogenous sphingolipid synthesis.  相似文献   

7.
Covalent conjugates of transferrin (Tf) and alpha-fetoprotein (AFP) with horseradish peroxidase (HRP) have been used to follow, at the ultrastructural level, the uptake and the intracellular pathway of these proteins in peripheral blood human lymphocytes stimulated by phytohemagglutinin (PHA) to blast formation. Both proteins enter specifically the cells via vesicles (60-70 nm in diameter) and endosomes. They are then observed in multivesicular bodies and tubular vesicular elements in the Golgi region. AFP is thus found in the same subcellular compartments as Tf and is probably also recycled, as most of the 125I-labeled protein leaves the cells undegraded. Unstimulated lymphocytes do not internalize significantly AFP-HRP. The uptake of a noncovalent conjugate of AFP-HRP and [3H]-arachidonic acid [3H-(20:4)] is usually poor, at 37 degrees C, in unstimulated lymphocytes as well as, at 4 degrees C, in lymphocytes stimulated for 72 h. Stimulated lymphocytes incubated at 37 degrees C with the radioactive conjugate show a heavy labeling of cell organelles and more particularly of lipid droplets. AFP could regulate the intracellular delivery of fatty acid molecules.  相似文献   

8.
The purpose of this study was to examine the effects of cholesterol surface transfer between lipid vesicles and rat arterial smooth muscle cells on endogenous synthesis of cholesterol and phosphatidylcholine. Lipid vesicles containing cholesterol and egg phosphatidylcholine in different proportions were used as the extracellular lipid source. The rate of cellular cholesterol and phosphatidylcholine synthesis was determined from the [14C]acetate incorporation into these lipid classes. [3H]Cholesterol in lipid vesicles, with a cholesterol/phospholipid (C/P) mole ratio of 1:1, was rapidly transferred into rat smooth muscle cells, with a half-time of about 3.6 hours in the absence of serum proteins. Incubation of cells for 5 hours with vesicles of a high C/P mole ratio (i.e. 1.5:1) at vesicle-cholesterol concentrations above 100 micrograms/ml resulted in a marked reduction of cellular cholesterol synthesis, whereas the rate of phosphatidylcholine synthesis was increased. Cells incubated with lipid vesicles of C/P 1:2 did not show any change in cellular cholesterol or phosphatidylcholine synthesis. Incubation of cells with egg phosphatidylcholine vesicles at concentrations above 300 micrograms/ml, on the other hand, stimulated endogenous synthesis of cholesterol without affecting cellular phosphatidylcholine synthesis. The main conclusion is that cholesterol surface transfer may influence cellular lipid metabolism in the absence of mediating serum lipoproteins in a model system with cultured cells and lipid vesicles.  相似文献   

9.
We examined the effects of reduction of sphingomyelin level on cholesterol behavior in cells using 2 types of Chinese hamster ovary cell mutants deficient in sphingomyelin synthesis: LY-A strain defective in intracellular trafficking of ceramide for sphingomyelin synthesis, and LY-B strain defective in the enzyme catalyzing the initial step of sphingolipid biosynthesis. Although the sphingomyelin content in LY-A and LY-B cells was approximately 40 and approximately 15%, respectively, of the wild-type level without accumulation of ceramide, these mutant cells were almost identical in cholesterol content and also in plasma membrane cholesterol level to the wild-type cells. However, density gradient fractionation analysis of Triton X-100-treated lysates of cells prelabeled with [(3)H]cholesterol showed that the [(3)H]cholesterol level in the low-density floating fraction was lower in sphingomyelin-deficient cells than in wild-type cells. When cells were exposed to methyl-beta-cyclodextrin, cholesterol was more efficiently fluxed from sphingomyelin-deficient cells than wild-type cells. These results suggest that the steady state level of cholesterol at the plasma membrane is little affected by the sphingomyelin levels in Chinese hamster ovary cells, but that sphingomyelin levels play an important role in the retention of cholesterol in the plasma membrane against efflux to extracellular cholesterol-acceptors, due to interaction between sphingomyelin and cholesterol in detergent-resistant membrane domains.  相似文献   

10.
The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions.  相似文献   

11.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

12.
Small unilamellar vesicles consisting of sphingomyelin, cholesterol and phosphatidylserine in a molar ratio of 4:5:1 containing [3H]inulin as a marker of the aqueous space or [Me-14C]choline-labeled sphingomyelin as a marker of the lipid phase were injected intravenously into rats. After separation of the non-parenchymal cells into a Kupffer cell fraction and an endothelial cell fraction by elutriation centrifugation analysis of the radioactivity contents demonstrated that Kupffer cells were actively involved in the uptake of the vesicles whereas endothelial cells did not contribute at all. Uptake by total parenchymal cells was also substantial but, on a per cell base, significantly lower than that by the Kupffer cells. By comparising the fate of the [3H]inulin label and the [14C]sphingomyelin label it was concluded that release of liposomal lipid degradation products especially occurred from Kupffer cells rather than from parenchymal cells. In both cell types, however, substantial proportions of the 14C-label accumulated in the phosphatidylcholine fraction, indicating intracellular degradation of sphingomyelin and subsequent phosphatidylcholine synthesis. Treatment of the animals with the lysosomotropic agent chloroquine prior to liposome injection effectively blocked the conversion of the choline-labeled sphingomyelin into phosphatidylcholine in both cell types. This observation indicates that uptake of the vesicles occurred by way of an endocytic mechanism.  相似文献   

13.
The mechanism of interaction of artificially generated lipid vesicles (approximately 500 A diameter) with Chinese hamster V79 cells bathed in a simple balanced salt solution was investigated. The major pathways of exogenous lipid incorporation in vesicle-treated cells are vesicle-cell fusion and vesicle-cell lipid exchange. At 37 degrees C, the fusion process is dominant, while at 2 degrees C or with energy depleted cells, exchange of lipids between vesicles and cells is important. The fusion mechanism was demonstrated using vesicles of [14C]lecithin containing trapped [13H]inulin. Consistent with a fusion hypothesis, both components became cell associated at 37 degrees C in nearly the same proportions as they were present in the applied vesicles. Additional arguments in favor of vesicle-cell fusion and against phagocytosis or adsorption of intact vesicles are presented. At 2 degrees C or with inhibitor-treated cells, the [3H]inulin uptake was largely suppressed, while the lipid uptake was reduced to a lesser extent. Evidence for vesicle-cell lipid exchange was obtained using V79 cells grown on 3H precursors for cellular lipids. [14C]lecithin vesicles, incubated with such cells, showed no change in their elution properties when subjected to molecular sieve chromatography on Sepharose 4B. However, radioactivity and thin-layer chromatographic analyses revealed that a variety of cell lipiids had been exchanged into the uniamellar vesicles. Further evidence for the fusion and exchange processes was obtained using vesicles prepared from mixtures of [3H]lecithin and [14C]cholesterol. A two-step fusion mechanism consistent with the present findings is proposed as a working model for other fusion studies.  相似文献   

14.
The intracellular transport of mucus glycoprotein precursor (apomucin) from endoplasmic reticulum (ER) to Golgi was quantitated by the immunoprecipitation with 3G12 antimucin monoclonal antibody and by estimation of the apomucin glycosylation using UDP-[3H]galactose. The assembly of the entities carrying apomucin to Golgi was assessed by electron microscopy and by quantitation of the incorporation of [14C]choline, [14C]ethanolamine, and [14C]oleic acid into their lipids. The microscopic image of the isolated transport components revealed a population of 80- to 100-nm vesicles with occasional membranes of the ER used for their synthesis. On the average, the vesicles contained 82 ng apomucin/microgram of protein and 80-90% of the total incorporated lipid precursors. From that, 91% of [14C]choline was detected in phosphatidylcholine, and 9% in phosphatidylethanolamine, lysophosphatidylcholine, and sphingomyelin. With [14C]oleate, 54% of the label was incorporated into ceramide, diglyceride, and phosphatidic acid, 35% to phosphatidylcholine, 7% in phosphatidylethanolamine, and 2% in sphingomyelin. After incubation of the vesicles with Golgi, the apomucin was found glycosylated and the lipids of the transport vesicles incorporated into Golgi membranes. The fusion of the vesicular membranes was accompanied by the synthesis of sphingomyelin. In the Golgi, 39-55% of the radiolabeled phosphatidylcholine of transport vesicles was converted to sphingomyelin. The results indicate that the newly synthesized membranes of apomucin transporting vesicles are enriched in phosphoglycerides and ceramides. Upon fusion with the Golgi, the membranes of the vesicles are replenished with sphingomyelin by exchange reaction between phosphatidylcholine and ceramide.  相似文献   

15.
Werder M  Han CH  Wehrli E  Bimmler D  Schulthess G  Hauser H 《Biochemistry》2001,40(38):11643-11650
The serum lipoprotein high-density lipoprotein (HDL), which is a ligand of scavenger receptors such as scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36), can act as a donor particle for intestinal lipid uptake into the brush border membrane (BBM). Both cholesterol and phospholipids are taken up by the plasma membrane of BBM vesicles (BBMV) and Caco-2 cells in a facilitated (protein-mediated) process. The protein-mediated transfer of cholesterol from reconstituted HDL to BBMV depends on the lipid composition of the HDL. In the presence of sphingomyelin, the transfer of cholesterol is slowed by a factor of about 3 probably due to complex formation between cholesterol and the sphingolipid. It is shown that the mechanism of lipid transfer from reconstituted HDL to either BBMV or Caco-2 cells as the acceptor is consistent with selective lipid uptake: the lipid donor docks at the membrane-resident scavenger receptors which mediate the transfer of lipids between donor and acceptor. Selective lipid uptake implies that lipid, but no apoprotein is transferred from the donor to the BBM, thus excluding endocytotic processes. The two BBM models used here clearly indicate that fusion of donor particles with the BBM can be ruled out as a major mechanism contributing to intestinal lipid uptake. Here we demonstrate that CD36, another member of the family of scavenger receptors, is present in rabbit and human BBM vesicles. This receptor mediates the uptake of free cholesterol, but not of esterified cholesterol, the uptake of which is mediated exclusively by SR-BI. More than one scavenger receptor appears to be involved in the uptake of free cholesterol with SR-BI contributing about 25% and CD36 about 35%. There is another yet unidentified protein accounting for the remaining 30 to 40%.  相似文献   

16.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

17.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human peripheral T cells. Bacterial lipopolysaccharide (LPS) is nonmitogenic in human T cells. However, in the presence of monocytes, LPS becomes mitogenic to proliferate T cells. The aim of this study was to define the incompetency of LPS on two mitogenic signals in human peripheral T cells. T cells were isolated from human peripheral blood. [Ca(2+)](i) and pH(i) were determined by loading the cells with the fluorescent dyes, Fura-2 acetoxymethyl ester (Fura-2/AM) and 2',7'-bis(2-carboxyethyl)-5-(and 6)carboxyfluorescein acetoxymethyl ester (BCECF/AM). PKC activity was determined by protein kinase assay and cell proliferation was estimated from the incorporation of [(3)H]-thymidine. The results indicated that (1) LPS (10 microg/ml) stimulated PKC activity significantly within 5 min, reached a plateau at 30 min, and maintained that level for at least 2 h; and (2) LPS stimulated cytoplasmic alkalinization but did not affect the levels of [Ca(2+)](i) and [(3)H]-thymidine incorporation into T cells. Moreover, the combination of calcium ionophore A23187 with LPS significantly stimulated [(3)H]-thymidine incorporation into T cells. Thus, the results demonstrate that LPS failed to proliferate T cells, probably because of a lack of the machinery necessary to stimulate the mitogenic signal on [Ca(2+)](i) elevation.  相似文献   

18.
Preincubation of rat liver microsomal vesicles at 37 degrees C in the presence of [3H]cholesterol/phospholipid liposomes results in a net transfer of cholesterol from liposomes to microsomal vesicles. This transfer follows first-order kinetics. For similar concentrations of the donor vesicles, rates of transfer are about 6-8 times lower with cholesterol/sphingomyelin liposomes compared with cholesterol/phosphatidylcholine liposomes. Also, transfer of cholesterol from cholesterol/sphingomyelin liposomes to microsomal vesicles reveals a larger activation energy than for the process from cholesterol/phosphatidylcholine liposomes. There is a significant correlation between the amount of liposomal cholesterol transferred to microsomal vesicles during preincubation and the increase found with acyl-CoA:cholesterol acyltransferase activity in these microsomes over their corresponding controls. If, however, liposomes made solely of phospholipids are substituted for the cholesterol/phospholipid liposomes in the preincubation system containing microsomal vesicles, then the acyl-CoA:cholesterol acyltransferase activity is decreased compared with the corresponding control system. Both sphingomyelin and phosphatidylcholine liposomes are equally effective in decreasing the enzyme activity. These results offer direct kinetic evidence for the positive correlation between cholesterol and sphingomyelin found in vivo in biological membranes.  相似文献   

19.
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.  相似文献   

20.
Human fibroblasts from normal subjects and Niemann-Pick A (NPA) disease patients were fed with two labeled metabolic precursors of sphingomyelin (SM), [3H]choline and photoactivable sphingosine, that entered into the biosynthetic pathway allowing the synthesis of radioactive phosphatidylcholine and SM, and of radioactive and photoactivable SM ([3H]SM-N3). Detergent resistant membrane (DRM) fractions prepared from normal and NPA fibroblasts resulted as highly enriched in [3H]SM-N3. However, lipid and protein analysis showed strong differences between the two cell types. After cross-linking, different patterns of SM-protein complexes were found, mainly associated with the detergent soluble fraction of the gradient containing most cell proteins. After cell surface biotinylation, DRMs were immunoprecipitated using streptavidin. In conditions that maintain the integrity of domain, SM-protein complexes were detectable only in normal fibroblasts, whereas disrupting the membrane organization, these complexes were not recovered in the immunoprecipitate, suggesting that they involve proteins belonging to the inner membrane layer. These data suggest that differences in lipid and protein compositions of these cell lines determine specific lipid-protein interactions and different clustering within plasma membrane. In addition, our experiments show that photoactivable sphingolipids metabolically synthesized in cells can be used to study sphingolipid protein environments and sphingolipid-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号