首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, all attempts at fish embryo cryopreservation have failed. One of the main reasons for this to occur is the high chilling sensitivity reported in fish embryos thus emphasizing the need for further testing of different methods and alternative cryoprotective agents (CPAs) in order to improve our chances to succeed in this purpose. In this work we have used the antifreeze protein type I (AFP I) as a natural CPA. This protein is naturally expressed in sub-arctic fish species, and inhibits the growth of ice crystals as well as recrystallization during thawing. Embryos from Sparus aurata were microinjected with AFP I at different developmental stages, 2 cells and blastula, into the blastomere-yolk interface and into the yolk sac, respectively. Control, punctured and microinjected embryos were subjected to chilling at two different temperatures, 0 degrees C (1h) and -10 degrees C (15min) when embryos reached 5-somite stage. Embryos were subjected to -10 degrees C chilling in a 3M DMSO extender to avoid ice crystal formation in the external solution. Survival after chilling was established as the percentage of embryos that hatch. To study the AFP I distribution in the microinjected embryos, a confocal microscopy study was done. Results demonstrate that AFP I can significantly improve chilling resistance at 0 degrees C, particularly in 2-cell microinjected embryos, displaying nearly 100% hatching rates. This fact is in agreement with the confocal microscopy observations which confirmed the presence of the AFP protein in embryonic cells. These results support the hypothesis that AFP protect cellular structures by stabilizing cellular membranes.  相似文献   

2.
Hu SN  Yu H  Zhang YB  Wu ZL  Yan YC  Li YX  Li YY  Li YP 《FEBS letters》2012,586(3):222-228
Here we report that splice blocking morpholinos (Sb MO) against zebrafish sox31 elicit developmental arrest, likely through creating a series of dominant negative splicing variants. Embryos injected with the Sb MO develop normally before the Mid-Blastula Transition (MBT); however, they do not initiate epiboly. Microarray analysis of mRNAs collected at the dome stage revealed that the Sb MO impairs activation of a large set of zygotic genes and reduces degradation of maternal mRNA during MBT. Furthermore, an apoptotic response occurs in Sb morphants at about 6hpf. SoxB1 family genes including sox31 thus play an essential role for early embryos traversing the transitional stage.  相似文献   

3.
用显微注射法把含有E.coli galk和gpt基因的环状和线状重组DNApIDB103分别导入金鱼受精卵的细胞质内。这些注射过的卵子一般都能正常发育。从各不同发育时期的胚胎分离DNA与~(32)P标记的pIDB103探针杂交表明,导入的环状外源重组DNA在胚胎发育的早期,绝大部分以各种环状构型存在。从原肠胚晚期开始,它们逐渐形成串联状高分子量DNA。在尾芽期仍能检测到它们的序列。但尚未证明,它们是否与受体的染色体DNA发生整合。我们从囊胚期的胚胎中回收到了能转化大肠杆菌的环状重组DNA,它的酶切图谱和pIDB103极其相似。导入金鱼受精卵内的线状重组质粒pIDB103,除少量DNA与金鱼的染色体DNA可能发生整合外,其余绝大部分也形成高分子量DNA。  相似文献   

4.
With the aim of carrying out chimaerism and somatic cell-midblastula transition (MBT) embryos co-culture experiments in freshwater fish species, we evaluated the effect of osmolarity and composition of two media commonly used in cell fish culture on MBT zebrafish embryos and their further development and survival. To this end, wild zebrafish dechorionated embryos in midblastula stage were cultured for 6 days (Experiment 1: 189 embryos) or 1 h (Experiment 2: 150 embryos) in three different media: Hanks' 10% (H-10), 35 mOsm; Hanks' 100% (CH), 315 mOsm; and L-15 with serum (L-15: 315 mOsm). High osmolarity affected the survival rate (6 days: L-15: 45.1% v. CH: 72.34% v. H-10: 100%, P < 0.05; after 6 days: 0% both in L-15 and CH) and slowed their developmental timing. Embryos showed tail deformation (curly) as well as body paralysis at 48 h when they showed tail movements at 28 h. Differences in tail deformation were observed between high-osmolarity groups (CH: 85.10% v. L-15: 98.04%; P < 0.05). In Experiment 2, no effects on survival rate were observed. Teratogenic effects were only observed in L-15 (L-15: 12.98% v. CH: 0%; P< 0.05). Loss of motility was not detected in any group at 48 h. Optimum osmolar condition for cultured cells and also embryonic cells is around 315 mOsm and so, during chimaerism experiments (usually practised at MBT stage), present results indicate that midblastula embryos can acceptably bear the effects caused by 315 mOsm (CH) for 1 h, even though this involves a certain delay in developmental timing.  相似文献   

5.
6.
7.
Litter size of DNA microinjected zygotes is lower than for non-manipulated zygotes. The rate of embryonic and fetal survival in early, mid and late gestation was determined to assess whether DNA integration was responsible for embryonic losses. Also, the effect of including non-microinjected embryos with injected embryos on pregnancy rate and transgenic pup production was determined. In Experiment 1, one-cell embryos from immature CD-1 mice were microinjected with a whey acidic protein promoter-human protein C gene construct. One hour after microinjection embryos were transferred to pseudopregnant recipients (45 transfers of 30 embryos each). Fifteen recipients were sacrificed on day 4, 12 and 18 of gestation and the embryos/fetuses analysed for the transgene. The percentage of embryos or fetuses that were positive for the transgene was not significantly different at any day. However, the number of viable embryos at day 4 was significantly greater than fetuses on days 12 or 18. In addition, a high degree of mosaicism was observed in day 18 fetuses and placentae recovered. In Experiment 2, one-cell embryos from CD-1 mice were microinjected and co-transferred with non-manipulated embryos (C57BL/6). Pregnancy rate and the total number of pups born were improved by addition of non-injected embryos. However, the number of transgenic mice produced was similar whether non-injected embryos were included or not. There were 32.2% (15/46) transgenic pups when 0 non-injected embryos were transferred compared with 15.1% (13/86) transgenic pups when 4 or 8 non-injected embryos were added to the transfers. In summary, a high degree of embryonic and fetal mortality occurs among microinjected embryos. Furthermore, since the percentage of transgenesis did not change throughout pregnancy, DNA integration does not appear to account for all of the embryonic losses. other factor(s) related to the microinjection procedure may be involved in the embryonic and fetal failure of microinjected embryos. Addition of non-injected embryos, although it increased pregnancy rate and the number of pups born from microinjected embryos, actually decreased the number of transgenic pups obtained per pregnancy.  相似文献   

8.
Gene targeting is a precise manipulation of endogenous gene by introduction of exogenous DNA and has contributed greatly to the elucidation of gene functions. Conventional gene targeting has been achieved through a use of embryonic stem cells. However, such procedure is often long, tedious, and expensive. This study was carried out to develop a simple procedure of gene targeting using E. coli recombinase A (RecA) and modified single-stranded oligonucleotides. The new procedure was attempted to modify X-linked hypoxanthine phosphoribosyltransferase (HPRT) gene in mouse embryos. The single-stranded oligonucleotide to target an exon 3 of HPRT was 74 bases in length including phosphorothioate linkages at each terminus to be resistant against exonucleases when introduced into zygotes. The oligonucleotide sequence was homologous to the target gene except a single nucleotide that induces a mismatch between an introduced oligonucleotide and endogenous HPRT gene. Endogenous repairing of such mismatch would give rise to the conversion of TAT to TAG stop codon thereby losing the function of the target gene. Before an introduction into zygotes, single-stranded oligonucleotides were bound to RecA to enhance the homologous recombination. The RecA–oligonucleotide complex was microinjected into the pronucleus of zygote. Individual microinjected embryos developed to the blastocyst stage were analyzed for the expected nucleotide conversion using polymerase chain reaction (PCR) and subsequent sequencing. The conversion of TAT to TAG stop codon was detected in three embryos among 48 tested blastocysts (6.25% in frequency). The result suggests that the gene targeting was feasible by relatively easier and direct method.  相似文献   

9.
10.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT.  相似文献   

11.
Microinjection has proven useful for introduction of low-permeability cryoprotective agents (CPAs) into fish eggs or embryos for cryopreservation. In this work, we examined the suitable conditions for single or combined microinjection into the perivitelline space (PS) and the yolk mass (YM) of embryos of the Japanese whiting, an alternative marine fish model for embryo cryopreservation studies. The parameters examined were injection volume, CPA type and concentration, vehicle (diluent), and suitable developmental stage. Somites and tail elongation embryos tolerated single or combined injection with 2.1 and 15.6 nl in the PS and YM, respectively, whereas earlier embryonic stages tolerated only up to 8.2 nl in the YM. The injected solutions diffused rapidly throughout the PS and YM and remained contained within each compartment unless in the case of structural damage caused by injection of larger volumes. Yamamoto solution was marginally better as a vehicle for microinjection of CPAs than fish Ringer and phosphate buffer saline whereas ¼ artificial sea water was clearly unsuitable. Ethylene glycol was well tolerated by embryos in all developmental stages whereas 1, 2-propylene glycol was suitable only for early embryonic stages. Overall, microinjection was efficient in delivering high loads of CPAs inside whiting embryos more swiftly than previously obtained for this species by immersion-based impregnation protocols. Embryos microinjected with CPAs showed a decrease in embryo nucleation temperature and an increase in chilling tolerance. CPA-microinjected embryos will provide valuable materials to optimize the remaining parameters that are critical for successful cryopreservation such as cooling and warming strategies.  相似文献   

12.
13.
We studied the influence of combined microinjection of a gene engineering construct and site-specific endonuclease Sal in the pronucleus on preimplantation development of (CBA x C57BL)F1 mouse embryos in vitro. The rate of survival of the embryos was estimated according to their capacity to develop until the blastocyst stage and hatch from zona pellucida. The results obtained suggest that the microinjection of exogenous DNA jointly with endonuclease SalI at concentrations from 0.1 to 0.01 U/microl decreased reliably the rate of survival, as compared to the control (p < 0.05 and p < 0.01, respectively). However, a decrease of endonuclease SalI concentration in the injection mixture to 0.01 U/microl enhanced the capacity of mouse embryos to develop until the blastocyst stage and hatch from zona pellucida, as compared to the embryos microinjected with exogenous DNA and endonuclease SalI at a higher concentration.  相似文献   

14.
15.
16.
Fate of microinjected genes in preimplantation mouse embryos.   总被引:5,自引:0,他引:5  
The state of genes microinjected into mouse embryos was followed from the one-cell to the blastocyst stage using the polymerase chain reaction (PCR). Microinjected DNA was detected in all one-, two-, and four-cell injected embryos and in 44% of morula and 26% of blastocysts. Head-to-tail ligation of microinjected genes, a common feature of stably integrated transgene arrays, was detected in all embryos after injection of microinjected genes and occurred irrespective of the structure at the ends of the injected genes. Sensitivity of microinjected DNA to a methylation-dependent restriction endonuclease Dpn I was lost in all embryos by the two-cell stage (24 hr), indicating a change in DNA methylation, independent of transgene integration. Dissociation of blastomeres prior to compaction revealed a mosaic distribution of the microinjected DNA within the embryo and supports the notion that injected genes form a limited number of arrays, which segregate independently until they integrate into the genome or are degraded.  相似文献   

17.
We examined transgenic-cattle production by DNA microinjection into 1-, 2-, and 4-cell embryos, analyzing the impact on calf size and subsequent viability. Embryos were either collected at an abattoir by flushing oviducts from superovulated and artificially inseminated cows (in vivo-derived) or obtained by in vitro maturation and in vitro fertilization of oocytes aspirated from excised ovaries (in vitro-derived). A human serum albumin (hSA) milk-expression DNA construct was microinjected, either in one of the visible pronuclei of in vitro- and in vivo-derived 1-cell embryos or in the nuclei of two blastomeres of 2- and 4-cell in vivo-derived embryos. Microinjection-induced mortality (lysis and developmental block) was equivalent ( approximately 40%) for all microinjected embryos. Embryos were co-cultured with BRL cells in B-2 medium containing 10% fetal calf serum (FSC). Overall, embryo development to morulae/blastocysts was significantly greater for in vivo-derived ova (15.5%) than for in vitro-derived oocytes (9.3%). All morulae and blastocysts were transferred to synchronized recipient females on Days 6-8 post-fertilization. A total of 189 calves were delivered. Birth weights were significantly greater for calves generated from in vitro-derived oocytes compared with those generated from in vivo-derived oocytes. One transgenic bull calf was obtained from the microinjection of a 2-cell embryo. Fluorescence in situ hybridization (FISH) analysis of lymphocytes detected one transgenic integration site in all cells. Transmission frequency of the hSA transgene in embryos obtained through IVM/IVF/IVC utilizing the semen of the transgenic calf confirmed that it was not mosaic.  相似文献   

18.
19.
The role of cyclin-dependent kinases in cell proliferation is well characterized, whereas their somewhat paradoxical role in catalyzing apoptosis is less understood. One Cdk complex implicated in both cell proliferation and cell death is cyclin A/Cdk2. During early embryonic development of Xenopus laevis, distinct isoforms of cyclin A are expressed at different times. From fertilization through gastrulation, cyclin A1 is the predominant isoform. Cyclin A1 dimerizes with Cdk2 but not Cdk1. In contrast, cyclin A2 is expressed at a low level until gastrulation, when it becomes the major A-type cyclin and associates with both Cdk1 and Cdk2. When Xenopus embryos are treated with ionizing radiation (IR) prior to the midblastula transition (MBT), cyclin A1 protein persists beyond the MBT and forms an active complex with Cdk2. During this window of cyclin A1/Cdk2 activity, the embryo undergoes apoptosis. To test the hypothesis that cyclin A1-associated activity is a mediator of apoptosis, cyclin A1 protein level and associated kinase activity were measured in embryos treated with aphidicolin to induce apoptosis. Both cyclin A1 content and associated kinase activity were sustained after the MBT as embryos underwent apoptosis. To determine whether cyclin A1/Cdk2 was sufficient to induce apoptosis, recombinant cyclin A1/Cdk2 complex was injected into single-celled embryos, which induced apoptosis after the MBT. However, morpholinos targeting translation of cyclins A1 and A2 did not block apoptosis in embryos treated with X-rays or aphidicolin. These data indicate that cyclin A1/Cdk2 is sufficient, but not required for apoptosis during early development.  相似文献   

20.
The efficiency of transgenic animal production would increase if microinjected embryos with a successfully integrated transgene could be identified prior to transfer. It is possible to detect microinjected DNA in embryos. However, no reliable system is able to distinguish between transgenes merely present as extrachromosomal DNA and those that have been integrated into chromatin. The experiments reported here were designed to determine if the inclusion of matrix attachment regions (MARs) would enhance the efficiency of transgenic embryos identification using a selection scheme based on the expression of green fluorescent protein (GFP). Pronuclei of mouse embryos were microinjected with GFP reporter gene under the control of three different promoters and flanked or not by three different MAR elements. Transgene expression profiles were followed by direct visualization of GFP in cultured microinjected embryos. Embryos at different developmental stages were classified according to their GFP expression and groups with the same expression pattern were transferred into oviducts of pseudopregnant female mice. Fetuses were collected between days 12–15, and their genomic DNA was purified and analyzed to detect transgene integration. We did not find any statistically significant difference between the percentage of transgenic fetuses produced from GFP-positive or GFP-negative embryos transferred at 4-cell, morula, or blastocyst stage. However, when MAR elements were included in the construct, we found that GFP-positive embryos transferred at the 2-cell stage produced a significantly higher percentage of transgenic fetuses than GFP-negative embryos, but MAR sequences did not completely eliminate false positives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号