首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolamellar bodies and prothylakoids from etioplasts of wheat ( Triticum aestivum L. cv. Starke II, Weibull) were separated by sucrose density gradient centrifugation. Top-loaded and bottom-loaded sucrose gradients were compared. As a consequence of avoiding long time exposure of the membranes to low sucrose concentrations, separation in bottom-loaded gradients, as compared to separation in top-loaded gradients, resulted in a sharper and more narrow band of prothylakoids, and in better preservation of phototransformable protochlorophyllide, especially in the prothylakoids. In bottom-loaded gradients, the prothylakoids were found concentrated in a band at a density of 1.20 g'ml−1. The prolamellar bodies were found at a density of 1.17 g'ml−1. In top-loaded gradients the prothylakoids were found at a lower density than the prolamellar bodies. The prothylakoid fraction contained about 60% of the recovered protochlorophyllide and about 85% of the recovered protein. Absorption and fluorescence emission spectra revealed a higher amount of phototransformable protochlorophyllide, in relation to non-phototransformable, in the prolamellar body fraction than in the prothylakoid fraction. Polyacrylamide gel electrophoresis indicated a high proportion of protochlorophyllide reductase in the prolamellar bodies. Chloroplast ATPase (CF1) was found predominantly in the prothylakoid fraction. Thus, our results strongly indicate the presence of phototransformable protochlorophyllide in the prolamellar bodies proper, while the main bulk of proteins are located in the prothylakoids.  相似文献   

2.
The inner membranes from wheat ( Triticum aestivum L. cv. Walde, Weibull) etioplasts were separated by density centrifugation. The etioplasts were broken by osmotic shock and the inner membranes were split by the sheering forces when pressed through a syringe needle. Membrane fractions representative of prolamellar bodies and prothylakoids, respectively, were achieved by separation on a 20–50% continuous sucrose density gradient followed by different purification procedures. The membrane contents of the isolated fractions were characterized by low temperature fluorescence spectra, sodium dodecyl sulphate polyacrylamide gel electrophoresis and electron micrographs. The prolamellar body and the prothylakoid fractions had a fluorescence emission ratio 657/633 nm of 18 and 0.9, respectively. The main part of the total amount of PChlide was found in the prolamellar body fraction. The electrophoretograms stained with Coomassie Blue showed the presence of mainly two polypeptides. The NADPH-protochlorophyllide oxidoreductase was the dominating polypeptide in the prolamellar body fraction, and the α and β subunits of the coupling factor 1 of chloroplast ATP synthase the dominating polypeptides in the prothylakoid fraction. Silver staining revealed at least 4 additional prominent bands with molecular weights of 86, 66, 34 and 28 kDa. The polypeptide composition of the prolamellar body is thus more complex than earlier judged after Coomassie Blue staining. The function of these polypeptides is unknown, but the knowledge of their presence is important in understanding the formation and function of the prolamellar body.  相似文献   

3.
Cotyledons of conifers have a light-independent pathway for chlorophyll biosynthesis. To investigate whether the prolamellar body of Scots pine ( Pinus sylveslris L.) is similar to the better known prolamellar body of wheat, etioplast membrane fractions were isolated from cotyledons of dark-grown Scots pine. Dark-grown cotyledons contained both chlorophyll and protochlorophyllide, 158 and 10 nmol (g fresh weight)'respectively, and had a chlorophyll a to b ratio of 4.2. The content of glyco- and phospholipids was 7.1 μmol (g fresh weight)1. About 40 mol % of these lipids were the specific plastid lipids – monogalactosyl diacylglycerol. digalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol in the relative amounts 50, 35 and 7 mol %. The mol ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol was 1.7. Low temperature fluorescence emission spectra of intact cotyledons and homogenate showed maxima at 633, 657, 686, 696 nm and a broad peak at 725–735 nm. The maxima at 633 and 657 nm represented different forms of protochlorophyllide and the other emission maxima represented chlorophyll protein complexes. The 657 nm form of protochlorophyllide was phototransformable both in vivo and in the isolated membranes. The phototransformable protochlorophyllide was substantially enriched in the prolamellar body fraction.
The specific activity of light dependent protochlorophyllide oxidoreductase in the prolamellar body fraction was found to be 2 nmol chlorophyllide formed [(mg protein)−1 min−1]. The molecular weight of the enzyme polypeptide was determined as 38 000 dalton with sodium dodecylsulphate-polyacrylamide gel electrophoresis.  相似文献   

4.
The inner membranes from wheat ( Triticum aestivum L. cv. Walde) etioplasts were separated into membrane fractions representative of prolamellar bodies and prothylakoids by differential and gradient centrifugations. The isolated fractions were characterized by absorption-, low-temperature fluorescence-, and circular dichroism (CD) spectroscopy, by high performancy liquid chromatography and by sodium dodecyl sulphate polyacrylamide gel electrophoresis.
The prolamellar body fraction was enriched in NADPH-protochlorophyllide oxidoreductase (E.C. 1.6.99.1), and in protochlorophyllide showing an absorption maximum at 650 nm and a fluorescence emission maximum at 657 nm. Esterified protochlorophyllide was mainly found in the prothylakoid fraction. The carotenoid content was qualitatively the same in the two fractions. On a protein basis the carotenoid content was about three times higher in the prolamellar body fraction than in the prothylakoid fraction. The CD spectra of the membrane fractions showed a CD couplet with a positive band at 655 nm, a zero crossing at 643–644 nm and a negative band at 623–636 nm. These results differ from earlier CD measurements on protochlorophyllide holochrome preparations. The results support the interpretation that protochlorophyllide is present as large aggregates in combination with NADPH and NADPH-protochlorophyllide oxidoreductase in the prolamellar bodies.  相似文献   

5.
The localization of NADPH-protochlorophyllide oxidoreductase (PChlide reductase, EC 1.6.99.–) in dark-grown and in irradiated dark-grown leaves of wheat ( Triticum aestivum L. cv. Walde) was investigated by subjecting thin sections of Lowicryl K4M-embedded leaf pieces to a monospecific antiserum raised against PChlide reductase followed by protein A-gold. A well-preserved antigenicity of the tissue was achieved by polymerizing the resin under UV-light at low temperature. In dark-grown leaves PChlide reductase was found in prolamellar bodies only. In leaves irradiated for 30 min with white light PChlide reductase was found not only in the transformed prolamellar bodies but also to a large extent in connection with the prothylakoids. The localization of PChlide reductase is discussed in relation to fluorescence emission spectra of the dark-grown and greening leaves. We conclude that the light-dependent transformation of protochlorophyllide to chlorophyllide initiates a translocation of PChlide reductase from the prolamellar bodies to the prothylakoids.  相似文献   

6.
Inner etioplast membrane fractions were isolated from wheat ( Triticum aestivum L. cv. Starkell), Scots pine ( Pinus sylvestris L.) and Jeffrey pine ( Pinus jeffreyi Murr), in order to investigate whether cotyledons of dark-grown conifers have protochlorophyllide associated to protochlorophyllide oxidoreductase (EC 1.6.99.–) in the pro-lamellar body in the same way as angiosperms. Protochlorophyllide was found to be present in dark-grown seedlings of Scots pine and Jeffrey pine to the same extent as in dark-grown wheat, 10–15.8 nmol (g fresh weight)−1. Fluorescence emission spectra at 77 K showed accumulation of protochlorophyllide with emission maximum at 657 nm in the prolamellar body fractions of the three species studied. Also the light- and NADPH-dependent activity of protochlorophyllide oxidoreductase was consistently localized in the prolamellar body fractions. The three prolamellar body fractions were dominated by the same polypeptide. Its molecular weight was estimated to be 38 000 by sodium dodecylsulphate polyacrylamide gel electrophoresis.  相似文献   

7.
Isolated prolamellar bodies from the etioplasts of dark-grown wheat ( Triticum aestivum L. cv. Walde, Weibull) contain the enzyme NADPH-protochlorophyllide oxidoreductase. The organisation of this enzyme in a pigment-protein complex results in fluorescence emission maxima at 633 and 657 nm. Isolated prolamellar bodies stored in darkness for 24 or 48 h at 4°C (pH 7.2) in the presence of NADPH showed a fluorescence emission ratio 657/633 nm around 4 at −196°C. With acidic conditions this fluorescence ratio increased, with an optimum at pH 5.5. Such an increase was even more pronounced in the presence of ATP and NADPH with ratios up to 8, but was completely blocked when the sulfhydryl inhibitor, dithiobis-nitrobenzoic acid, was added. As shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis the amount of NADPH-protochlorophyllide oxidoreductase in the prolamellar bodies did not change during storage for 24 or 48 h.
The total amount of protochlorophyllide measured in acetone extracts did not change significantly during storage for 48 h. The values were similar for storage at pH 7.2 and 5.5, but at lower pH (around 5) the pigment content decreased to a third.
The most plausible explanation for the increase in fluorescence ratio is that low pH and ATP give rise to a change in conformation, which results in transformation of the short wavelength (633 nm) fluorescing protochlorophyllide to the long wavelength (657 nm) fluorescing form.  相似文献   

8.
Membrane fractions containing intact etioplasts, etioplast inner membranes, prolamellar bodies or prothylakoids from wheat ( Triticum aestivum L. cv. Walde) were assayed for chlorophyll synthetase activity. Calculated on a protein basis, the etioplast inner membrane fraction showed a higher activity than the intact etioplasts. The activity was higher in the prolamellar body fraction than in the prothylakoid fraction. However, when the fractions were incubated in isolation medium with 50% (w/w) sucrose and 0.3 m M NADPH, chlorophyll synthetase activity could not be detected in the prolamellar body fraction, while the prothylakoid fraction maintained a high activity. The spectral shift to a shorter wavelength of the newly formed endogenous chlorophyllide was very rapid in the prothylakoid fraction but slow in the prolamellar body fraction. The relation between the spectral shift of chlorophyllide and the esterification activity in the fractions is discussed. Even exogenous short-wavelength chlorophyllide could not be esterified in well preserved prolamellar bodies. This indicates that chlorophyll synthetase is present in an inactive state in the prolamellar body structure. A large-scale method for the synthesis of geranylgeranylpyrophosphate, one of the substrates of the chlorophyll synthetase reaction, is also presented.  相似文献   

9.
Localization of protochlorophyll(ide) (Pchlide) forms and chlorophyllide (Chlide) transformation process were studied by using comparative analyses of de-convoluted 77 K fluorescence spectra of barley etioplast stroma and different membrane fractions obtained by sucrose gradient centrifugation. Non-photoactive 633 nm Pchlide form was mainly located in the envelope-prothylakoid membrane mixture while the photoactive 657 nm Pchlide was dominant pigment in the prolamellar body membrane and in the soluble etioplast fraction (stroma). When these fractions were exposed to a saturating flash, conversion of photoactive Pchlide into 697 nm Chlide was preferential in the prolamellar body and in the stroma, while the 676 nm Chlide was dominant pigment form in the envelope-prothylakoid fraction. These spectral characteristics are considered to reflect molecular composition and organization of the pigment-protein complexes specific for each etioplast compartment.  相似文献   

10.
Fluorescence spectra in the blue-green region and excitation fluorescence spectra of green wheat leaves, etiolated wheat leaves and isolated inner etioplast membranes (prolamellar bodies and prothylakoids) were compared to specify the structure of the active protochlorophyllide pigment-protein complex of inner etioplast membranes. Three bands in the blue region at 420, 443 and 470 nm and a broader green band at 525 nm were found. Comparison of the emission and excitation spectra suggests that the main components responsible for the blue fluorescence of etioplast inner membranes are pyridine nucleotides and pterins. The green fluorescence (525 nm) excitation spectra of etiolated samples were identical to the excitation spectrum of flavin fluorescence. The fact confirms the suggestion that flavins are the constituents of the active protochlorophyllide-protein complex.  相似文献   

11.
Prolamellar bodies were isolated from etiolated leaves of wheat ( Triticum aestivum L. cv. Walde, Weibull), which were illuminated for 4 h and then grown in darkness for 16 h. The inner etiochloroplast membranes were isolated by differential centrifugation, and prolamellar bodies and thylakoids were separated on a 10–50% continuous sucrose density gradient. The reformed prolamellar bodies contained phototransformable protochlorophyllide as the main pigment as shown by low temperature fluorescence spectra and high performance liquid chromatography. After illumination with 3 flashes of white light almost all of the protochlorophyllide was transformed to chlorophyllide. In the thylakoids, however, most of the protochlorophyllide was not phototransformed. The reformed prolamellar bodies and the thylakoids showed a fluorescence emission ratio 657/633 nm of 5.6 and 0.5, respectively. Both membrane systems contained also chlorophyllide and chlorophyll synthesized during the illumination. Polyacrylamide gel electrophoresis showed the main chlorophyllide oxidoreductasse.
Teransmission and scanning electron micrographs indicated that the reformed prolamellar bodies are mainly of the "narrow" type and that the prolamellar body fraction had only a minor contamination with thylakoid membranes.
The results obtained showed that reformed prolamellar bodies isolated from illuminated redarkened etiolated wheat leaves had features very similar to the prolamellar bodies isolated from etiolated leaves. This provides support for the idea that prolamellar bodies are an important natural membrane system which plays a dynamic role in the development of the etio-chloroplasts in light.  相似文献   

12.
Low-temperature fluorescence emission spectra of 6.5-day-old dark-grown epicotyls of pea ( Pisum sativum ) revealed the presence of protochlorophyll(ide). The upper part of the epicotyl contained 30% of the protochlorophyll(ide) content per fresh weight found in pea leaves, whereas the lower part contained 3%. Three discrete spectral forms of protochlorophyll(ide) were clearly distinguished after Gaussian deconvolution of fluorescence excitation and emission spectra. Adding the satellite bands of the Qy(0-0) transitions (the emission vibrational (Emv) bands with correlated amplitudes, gave the following delineation: Ex439–Em629–Emv684, Ex447–Em636–Emv700 and Ex456–Em650–Emv728. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunodetection of whole tissue extracts of the epicotyl indicated the presence of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). Electron micrographs showed prolamellar bodies in at most 11 % of the plastid profiles of the epicotyl cells. These prolamellar bodies were smaller, and many of them showed less regular structure than those of the leaves. Taken together, the results indicate that the protochlorophyll(ide) in epicotyls is arranged in a different way than in leaves.  相似文献   

13.
Light-induced alterations of isolated prolamellar bodies (PLBs) were studied in flash-irradiated suspensions of a PLB-enriched fraction and a mixed membrane fraction isolated from dark-grown seedlings of wheat (Triticum aestivum L. cv. Walde). The mixed membrane fraction consisted of PLB fragments and membrane vesicles originating from the prothylakoids. Ultrastructural and spectral properties, as well as pigment and protein composition of non-irradiated and of flash-irradiated suspensions were studied. The addition of 0.3 mM NADPH prevented spectral shifts towards shorter wavelengths in irradiated as well as in non-irradiated PLB-fractions. as measured by fluorescence emission at – 196°C. In non-irradiated PLB-fractions the amount of phototransformable protochlorophyllide (PChlide) as compared to nonphototransformable PChlide decreased when NADPH was not added. The emission maximum due to chlorophyll(ide) shifted from 696 nm to 680 um in the flashirradiated fractions where no NADPH was added. The amount of chlorophyllous pigments, as well as the amount of NADPH-protochlorophyllide oxidoreductase, decreased during the experimental period of 4 h in the suspensions without added NADPH. especially in the irradiated ones. The ultrastructure of the pelletable material in the different suspensions was analyzed by transmission and scanning electron microscopy. The non-irradiated PLBs appeared as cottonball-like structures in the scanning electron microscope. Without NADPH added more PLBs with an irregular tubular appearance were seen. After irradiation and storage for 1 h in darkness the surface was covered with vesicles. These vesicles were still present after 4 h. In the presence of NADPH no vesicle-formation occurred and the regular network of the PLBs was preserved also after an irradiation which caused transformation of PChlide to chlorophyllide. Thus, the regular structure seems to depend on an ample supply of NADPH. which in turn may be necessary to stabilize the pigment-protein complex in the lipid moiety of the PLB membranes. The formation of vesicles may thus be caused by a loss of this pigment-protein complex in suspensions with a low level of NADPH. The possible significance of an NADPH-dependence in vivo is discussed.  相似文献   

14.
Protochlorophyll forms in roots of dark-grown plants   总被引:1,自引:0,他引:1  
Protochlorophyll was found in roots of dark-grown plants of seven species investigated. It was identified by absorbance and fluorescence spectra of acetone and ether extracts. Chlorophyll was also found in roots of one pea species. The concentration of protochlorophyll was usually highest in young root tips and decreased upwards along the roots. The maxima of the in vivo absorbance spectra of the species studied varied between 634 and 638 nm. Low temperature in vivo fluorescence emission spectra had two maxima, one at ca 633 and the other at ca 642 nm, when the wavelengths of the excitation light were 440 and 460 nm, respectively. In vivo fluorescence excitation spectra displayed a shift of the excitation maximum from 438 to 445 nm, when emission varied from 620 to 647.5 nm. Deconvolution of these three types of spectra into Gaussian components made it possible to identify two spectral forms of protochlorophyll: protochlorophyll629–633 and protochlorophyll638–642.  相似文献   

15.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

16.
5-Aminolevulinic acid (ALA)-treatment of sections of dark-grown hypocotyls of kidney beans from the hook and downwards resulted in an additional biosynthesis of the protochlorophyll(ide) complexes Pchl(ide)628-633, and Pchl(ide)636-642, approximately proportional to the concentration originally present. A short light pulse given to sections treated with ALA for 6 h phototransformed the Pchl(ide)650-657 originally present to chlorophyllide.
When the sections were kept in light for 6 h without ALA, chlorophyll was formed and only traces of protochlorophyll(ides) were left. The pigment concentration (weight per fresh weight) in different sections of the hypocotyls was compared with their cell volume. The concentration decreased towards the roots and this decrease is mainly a dilution effect due to a gradual increase of the cell volume downwards, but a change of the pigment concentration per plastid also takes place.  相似文献   

17.
Dark-grown leaves of wheat ( Triticum aestivum L. cv. Starke II, Weibull) were treated in darkness with 8-hydroxyquinoline and δ-aminolevulinic acid in order to accumulate magnesium-protoporphyrin and/or magnesium-protoporphyrin monomethylester. Prolamellar bodies and prothylakoids were separated from the treated leaves by sucrose density gradient centrifugation. About 90% of the recovered magnesium-protoporphyrin/magnesium-protoporphyrin monomethylester and about 75% of the recovered protochlorophyllide was found in the prothlakoid fraction. The significance of the distribution pattern of the chlorophyll precursors between the prolamellar bodies and the prothylakoids is discussed. The results indicate that the prothylakoids are the site for synthesis of membrane-bound chlorophyll precursors and that phototransformable protochlorophyllide is a constituent of prolamellar bodies as well as of prothylakoids.  相似文献   

18.
Intact etioplasts of squash cotyledons, which had been preparedby Percoll density gradient centrifugation, were ruptured hypotonicallyin the presence of deoxyribonuclease I then fractionated intoprolamellar bodies and prothylakoids by differential and Percolldensity gradient centrifugations. This procedure provided ahighly purified prolamellar body fraction that was composedmainly of a 36,000-dalton protein. This protein was identifiedas NADPH:protochIorophyllideoxidoreductase [Ikeuchi and Murakami(1982) Plant & Cell Physiol. 23: 1089]. The fraction alsohad a high content of protochlorophyllide that absorbed at 648nm and its NADPH:protochlorophyllide oxidoreductase had highactivity. When the fraction was illuminated, a chlorophyllidethat absorbed at 684–685 nm formed. In contrast, the prothylakoid fraction, which showed high activityfor the Ca2+-dependent ATPase of coupling factor 1, containedonly a small amount of the 36,000-dalton protein and showedvery low NADPH:protochlorophyllide oxidoreductase activity.The protochlorophyllide content of this fraction also was low,and the ratio of protochlorophyll to protochlorophyll(ide) high.The absorption peak in the prothylakoids was at 633–635nm, and after a brief illumination a chlorophyllide that absorbedat 672–673 nm formed. These results indicate that thephotoactive protochlorophyllide-NADPHreductase complex in etioplastsis concentrated in the prolamellar body and that the physicalstate of protochlorophyll(ide) in the prolamellar body differsfrom that of the prothylakoid. (Received April 28, 1982; Accepted November 15, 1982)  相似文献   

19.
The protochlorophyll(ide) forms and plastid ultrastructure were investigated in hypocotyls of dark-grown seedlings of kidney bean ( Phaseolus vulgaris L. cv. Brede zonder draad). By deconvolution of the fluorescence emission spectra into Gaussian components three protochlorophyll(ide) forms were found with maxima at 633, 642 and 657 nm, respectively. The ratio of protochlorophyll(ide) emitting at 657 nm to protochlorophyll(ide) emitting at 633 nm decreased downwards the hypocotyl. The gradient was established already after 4 days in dark-grown Phaseolus and was also seen in hypocotyls of 7-day-old dark-grown plants of 8 other species. Ultrastructural observations revealed a plastid developmental sequence along the hypocotyl. Plastids in the upper parts of the hypocotyl contained prolamellar bodies typical of etiolated leaves while those in the lower parts contained only stroma lamellae. Immunological detection of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33) on nitrocellulose membranes after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDSPAGE) indicated the occurrence of the enzyme in upper, middle and lower sections of hypocotyls and in the root tips.  相似文献   

20.
Etioplasts were isolated from leaves of dark-grown wheat (Triticum aestivum L. var Starke II). Galactolipid biosynthesis was assayed in an envelope-rich fraction and in the fraction containing the rest of the etioplast membranes by measuring incorporation of 14C from uridine-diphospho[14C]galactose into monogalactosyl diacylglycerol and digalactosyl diacylglycerol. More than half of the galactolipid biosynthetic capability was found in the fraction of inner etioplast membranes. This fraction was subfractioned into fractions enriched in prolamellar bodies and membrane vesicles (prothylakoids), respectively. All membrane fractions obtained from etioplasts were able to carry out galactolipid biosynthesis, although the activity was very low in prolamellar body-enriched fractions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed markedly different polypeptide patterns between the different fractions. It is concluded that the capability of galactolipid biosynthesis of etioplasts probably is not restricted to the envelope, but is also present in the inner membranes of this plastid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号