首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.  相似文献   

2.
Maximal trachealis muscle shortening in vivo was compared with that in vitro in seven anesthetized dogs. In addition, the effect of graded elastic loads on the muscle was evaluated in vitro. In vivo trachealis muscle shortening, as measured using sonomicrometry, revealed maximal active shortening to be 28.8 +/- 11.7% (SD) of initial length. Trachealis muscle preparations from the same animals were studied in vitro to evaluate isometric force generation, isotonic shortening, and the effect of applying linear elastic loads to the trachealis muscle during contraction from optimal length. Maximal isotonic shortening was 66.8 +/- 8.4% of optimal length in vitro. Increasing elastic loads decreased active shortening and velocity of shortening in vitro in a hyperbolic manner. The elastic load required to decrease in vitro shortening to the extent of the shortening observed in vivo was similar to the estimated load provided by the tracheal cartilage. We conclude that decreased active shortening in vivo is primarily due to the elastic afterload provided by cartilage.  相似文献   

3.
Despite numerous reports on isometric force depression, few reports have quantified force depression during active muscle shortening (dynamic force depression). The purpose of this investigation was to determine the influence of shortening history on isometric force following active shortening, force during isokinetic shortening, and velocity during isotonic shortening. The soleus muscles of four cats were subjected to a series of isokinetic contractions at three shortening velocities and isotonic contractions under three loads. Muscle excursions initiated from three different muscle lengths but terminated at a constant length. Isometric force produced subsequent to active shortening, and force or shortening velocity produced at a specific muscle length during shortening, were compared across all three conditions. Results indicated that shortening history altered isometric force by up to 5%, force during isokinetic shortening up to 30% and shortening velocity during isotonic contractions by up to 63%. Furthermore, there was a load by excursion interaction during isotonic contractions such that excursion had the most influence on shortening velocity when the loads were the greatest. There was not a velocity by excursion interaction during isokinetic contractions. Isokinetic and isotonic power–velocity relationships displayed a downward shift in power as excursions increased. Thus, to discuss force depression based on differences in isometric force subsequent to active shortening may underestimate its importance during dynamic contractions. The presence of dynamic force depression should be realized in sport performance, motor control modeling and when controlling paralyzed limbs through artificial stimulation.  相似文献   

4.
In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.  相似文献   

5.
This work compares the specific effects of 3 mo of moderate, isometric, or dynamic voluntary exercises on the contractile properties of human adductor pollicis muscle. Isometric training consisted of 10 daily contractions of 5-s duration at the frequency of one contraction per minute. Dynamic training consisted of 10 daily series of 10 fast contractions (less than 0.5-s duration) moving a load of one-third of the maximal muscle strength at a frequency of one series per minute. Both training programs produced a concomitant increase in maximal tetanic tension and in peak rate of tension development (Ro). A larger increase (P less than 0.05) was found after isometric training (20 vs. 11% after dynamic exercises), whereas Ro augmented more (P less than 0.05) after dynamic contractions (31 vs. 18% after isometric training). Enhancements of twitch force (Pt), rates of twitch tension development (Rt), and of relaxation (St) were, respectively, 20, 20, and 12% after isometric training. There was no modification of contraction time and time of half relaxation (T 1/2R). Conversely, dynamic training produced increases of Rt (25%) and St (16%), associated with an apparently paradoxical decrease of Pt (10%) and reductions of contraction time (11%) and T 1/2R (9%). Maximal shortening velocity was only increased after dynamic training (21%), whereas the maximal muscle power presented a large increase (P less than 0.05) after isometric exercises (51 vs. 19% after dynamic exercises) and a shift of its optimal peak toward heavier loads. This study suggests that human muscle adapts differently to isometric or to dynamic training programs and provides evidence that its contractile kinetics can be altered by exercises performed in physiological conditions.  相似文献   

6.
Muscle surface displacement is a mechanical event taking place simultaneously with the tension generation at the tendon. The two phenomena can be studied by the surface mechanomyogram signal (MMG) (produced by a laser distance sensor) and the force signal (from a load cell). The aim of this paper was to provide data on the reliability of the laser detected MMG in muscle mechanics research. To this purpose it was verified if the laser detected MMG was suitable to estimate a frequency response in the cat medial gastrocnemius and its frequency response was compared with the one retrieved by the force signal at the tendon level. The force and MMG from the exposed medial gastrocnemius of four cats were analysed. The frequency response was investigated by sinusoidally changing the number of orderly recruited motor units, in different trials, in the 0.4-6 Hz range. It resulted that it was possible to model the force and MMG frequency response by a critically damped second-order system with two real double poles and a pure time delay. On the average, the poles were at 1.83 Hz (with 22.6 ms delay) and at 2.75 Hz (with 38 ms delay) for force and MMG, respectively. It can be concluded that MMG appears to be a reliable tool to investigate the muscle frequency response during stimulated isometric contraction. Even though not statistically significant. the differences in the second-order system parameters suggest that different components of the muscle mechanical model may specifically affect the force or MMG.  相似文献   

7.
A phenomenological model for muscle energy consumption was developed and used in conjunction with a simple Hill-type model for muscle contraction. The model was used to address two questions. First, can an empirical model of muscle energetics accurately represent the total energetic behavior of frog muscle in isometric, isotonic, and isokinetic contractions? And second, how does such a model perform in a large-scale, multiple-muscle model of human walking? Four simulations were conducted with frog sartorius muscle under full excitation: an isometric contraction, a set of isotonic contractions with the muscle shortening a constant distance under various applied loads, a set of isotonic contractions with the muscle shortening over various distances under a constant load, and an isokinetic contraction in lengthening. The model calculations were evaluated against results of similar thermal in vitro experiments performed on frog sartorius muscle. The energetics model was then incorporated into a large-scale, multiple-muscle model of the human body for the purpose of predicting energy consumption during normal walking. The total energy estimated by the model accurately reflected the observed experimental behavior of frog muscle for an isometric contraction. The model also accurately reproduced the experimental behavior of frog muscle heat production under isotonic shortening and isokinetic lengthening conditions. The estimated rate of metabolic energy consumption for walking was 29% higher than the value typically obtained from gait measurements.  相似文献   

8.
1. Within the range of the given conditions of measuring static and dynamic properties of the rabbit gastrocnemius muscle the following results were obtained: a) the dependence of the maxima of isotonic shortening upon the relative length of the muscle at constant load is linear; b) the parameters of the non-linear dependence of the passive elastic force of the muscle upon its relative length (measured in series) were identified using asymptotic regression; c) the time course of isotonic contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be satisfactorily approximated by responses of a linear system to a step-function; d) the time course of isometric contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be closely approximated by responses of a linear system to a step-function. 2. The time constants of isotonic and isometric contractions were determined as the parameters of the corresponding linear systems. 3. The maximum rates of the isometric and isotonic contractions were determined as maxima of the first derivatives of the responses of the corresponding models. 4. The experimental set-up made it possible to compare the values of the parameters concomitantly followed at various muscle lengths and at various loads.  相似文献   

9.
The force-velocity (F-V) relationships of canine gastrocnemius-plantaris muscles at optimal muscle length in situ were studied before and after 10 min of repetitive isometric or isotonic tetanic contractions induced by electrical stimulation of the sciatic nerve (200-ms trains, 50 impulses/s, 1 contraction/s). F-V relationships and maximal velocity of shortening (Vmax) were determined by curve fitting with the Hill equation. Mean Vmax before fatigue was 3.8 +/- 0.2 (SE) average fiber lengths/s; mean maximal isometric tension (Po) was 508 +/- 15 g/g. With a significant decrease of force development during isometric contractions (-27 +/- 4%, P < 0.01, n = 5), Vmax was unchanged. However, with repetitive isotonic contractions at a low load (P/Po = 0.25, n = 5), a significant decrease in Vmax was observed (-21 +/- 2%, P < 0.01), whereas Po was unchanged. Isotonic contractions at an intermediate load (P/Po = 0.5, n = 4) resulted in significant decreases in both Vmax (-26 +/- 6%, P < 0.05) and Po (-12 +/- 2%, P < 0.01). These results show that repeated contractions of canine skeletal muscle produce specific changes in the F-V relationship that are dependent on the type of contractions being performed and indicate that decreases in other contractile properties, such as velocity development and shortening, can occur independently of changes in isometric tension.  相似文献   

10.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

11.
To investigate the influence of strength training on the mechanical characteristics of human skeletal muscle, 14 male subjects went through training of combined heavy concentric and eccentric contractions three times a week for 16 weeks. The strength training program consisted mainly of dynamic exercises for leg extensors with loads of 80 to 120% of one maximum repetition. The force-time curves produced during various vertical jumps were the basis for calculation of various mechanical parameters. In addition to a great increase (p less than 0.001) in maximal isometric force, heavy resistance strength training also caused significant (p less than 0.05-0.01) increases in heights and in various mechanical parameters in positive work phases of vertical and drop jumps. The increase in positive force during a fast dynamic contraction was correlated (p less than 0.01) with the reduced time to produce a certain submaximal force level in isometric condition. No changes in the elastic properties of the muscle were observed as judged from the difference between the counter-movement and squat jumps. When the training was followed by the 8-week detraining period a great decrease (p less than 0.001) in maximal force took place, but only minor changes (ns) were observed in fast force production.  相似文献   

12.
The aim of this study was to estimate the dynamic response of a human muscle joint unit by means of the analysis of the torque signal recorded during electrical stimulation of the tibialis anterior (TA). Ten subjects (age: 23-50 years, 7 males, 3 females) volunteered for the study. The leg was fixed in an ergometer designed for isometric contraction of the ankle dorsiflexors and the detection of the generated torque. The amplitude of a 30 Hz stimulation train administered at the TA motor point was varied sinusoidally, thus changing the number of the recruited motor units, and hence the tension at the tendon, in the same fashion. A sequence of 14 frequencies (0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 Hz) was administered. RESULTS: (a) at the 14 frequencies the sinusoidal responses presented distortions always below 2%; (b) from the Bode plots reporting the average gain attenuation and phase shift at each of the 14 input frequencies, it was possible to model the force dynamic response as the one of a critically damped II order system with two real coincident poles (at 2.04 Hz) and a pure time delay (15.6 ms). The possibility to obtain, by means of the system input-output transfer function, data regarding the in vivo mechanics of the muscle-joint unit may represent a novel tool to investigate the functional features of different muscle groups. It may be useful for designing functional electrical stimulation programs as well as training and rehabilitation procedures.  相似文献   

13.
Stimulation trains that exploit the catchlike property [catchlike-inducing trains (CITs)] produce greater forces and rates of rise of force than do constant-frequency trains (CFTs) during isometric contractions and isovelocity movements. This study examined the effect of CITs during isotonic contractions in healthy subjects. Knee extension was electrically elicited against a load of 10% of maximum voluntary isometric contraction. The stimulation intensity was set to produce 20% of maximum voluntary isometric contraction. The muscle was tested before and after fatigue with a 6-pulse CFT and 6-pulse CITs that contained an initial doublet, triplet, or quadruplet. For prefatigue responses, the greatest isotonic performance was produced by CITs with initial doublets. When the muscles were fatigued, triplet CITs were best. CITs produce greater excursion, work, peak power, and average power than do CFTs, because CITs produced more rapid rates of rise of force. Faster rates of rise of force enabled the preload on the muscle to be exceeded earlier during the stimulation train.  相似文献   

14.
Eight male collegiate weightlifters (age: 21.2 +/- 0.9 years; height: 177.6 +/- 2.3 cm; and body mass: 85.1 +/- 3.3 kg) participated in this study to compare isometric to dynamic force-time dependent variables. Subjects performed the isometric and dynamic mid-thigh clean pulls at 30-120% of their one repetition maximum (1RM) power clean (118.4 +/- 5.5 kg) on a 61 x 121.9-cm AMTI forceplate. Variables such as peak force (PF) and peak rate of force development (PRFD) were calculated and were compared between isometric and dynamic conditions. The relationships between force-time dependent variables and vertical jump performances also were examined. The data indicate that the isometric PF had no significant correlations with the dynamic PF against light loads. On the one hand, there was a general trend toward stronger relationships between the isometric and dynamic PF as the external load increased for dynamic muscle actions. On the other hand, the isometric and dynamic PRFD had no significant correlations regardless of the external load used for dynamic testing. In addition, the isometric PF and dynamic PRFD were shown to be strongly correlated with vertical jump performances, whereas the isometric PRFD and dynamic PF had no significant correlations with vertical jump performances. In conclusion, it appears that the isometric and dynamic measures of force-time curve characteristics represent relatively specific qualities, especially when dynamic testing involves small external loads. Additionally, the results suggest that athletes who possess greater isometric maximum strength and dynamic explosive strength tend to be able to jump higher.  相似文献   

15.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

16.
An analysis of horizontal elbow flexion at maximal velocity was made to determine how different loads affected power output. Twenty male subjects operated a specially constructed dynamometer initially performing a maximal effort isometric trial with the elbow fully extended and then three dynamic trials at each of three loads equal to 75, 50, and 25 per cent of the maximal isometric strength. Angular acceleration was used to calculate forearm torque, and power was obtained by taking the product of torque and angular velocity. Power was found to be a cubic function of time and a fourth-order polynomial function of angular displacement reaching a peak early in the movement. The 50 per cent load resulted in a higher peak level of power than either the 25 or 75 per cent loads.  相似文献   

17.
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject maintained relative forces of either 25% and 70% maximal voluntary contraction (MVC), 50% and 100% MVC, or 40% and 60% MVC. Muscle oxygenation was assessed using a near infrared spectroscope, and expressed as a percentage of the reference value (ΔO2rest) which was the difference between the minimal oxygenation obtained after 6 min of ischaemia at rest and the maximal reoxygenation following the release of the tourniquet. During IIC at 25% MVC, muscle oxygenation decreased to 17 (SEM 3)% ΔO2rest, then it levelled off [25 (SEM 1)% ΔO2rest]. After the point at which target force could not be maintained, reoxygenation was very weak. During IIC at 40%, 50%, 60%, and 70% MVC, the lowest muscle oxygenation values were obtained after 15–20 s of contraction and corresponded to −18 (SEM 6), −59 (SEM 12) −31 (SEM 6), and −29 (SEM 6)% ΔO2rest, respectively. For the contraction at 100% MVC, the lowest oxygenation [−19 (SEM 9)% ΔO2rest] was obtained while force was decreasing (69% MVC). During the anisotonic part of the isometric contractions, the greatest reoxygenation rate was obtained after 50% MVC IIC (P < 0.001). Our results showed that during isometric elbow flexions between 25% and 100% MVC, there was no linear relationship between external force and muscle oxygenation, and that the maximal deoxygenation of the brachioradialis muscle was obtained at 50% MVC. Accepted: 16 February 1998  相似文献   

18.
The purpose of this study was to compare the acute neuromuscular fatigue during dynamic maximal strength and hypertrophic loadings, known to cause different adaptations underlying strength gain during training. Thirteen healthy, untrained males performed two leg press loadings, one week apart, consisting of 15 sets of 1 repetition maximum (MAX) and 5 sets of 10 repetition maximums (HYP). Concentric load and muscle activity, electromyography (EMG) amplitude and median frequency, was assessed throughout each set. Additionally, maximal bilateral isometric force and muscle activity was assessed pre-, mid-, and up to 30 min post-loading. Concentric load during MAX was decreased after set 10 (P<0.05), while the load was maintained throughout HYP. Both loadings caused large reductions in maximal isometric force (MAX=-30±6.4% vs. HYP=-48±9.7%, P<0.001). The decreased concentric and isometric strength during MAX loading was accompanied by reduced EMG amplitude (P<0.05). Conversely, hypertrophic loading caused decreased median frequency only during isometric contractions (P<0.01). During concentric contractions, EMG amplitude increased and median frequency decreased in HYP (P<0.01). Our results indicate reduced neural drive during MAX loading and more complex changes in muscle activity during HYP loading.  相似文献   

19.
The purpose of this study was to assess fatigue and recovery of isotonic power and isometric contractile properties after a series of maximal isotonic contractions. Using a Biodex dynamometer, 13 men [26 yr (SD 3)] performed isotonic [50% of isometric maximal voluntary contraction (MVC) every 1.2 s through 75 degrees range of motion] single-limb knee extensions at the fastest velocity they could achieve until velocity was reduced by 35%. Time to task failure was 38 s, and, compared with baseline, power declined by approximately 42% [741.0 (SD 106.0) vs. 426.5 W (SD 60.3) at task failure], and MVC declined by approximately 26% [267.3 (SD 42.5) vs. 198.4 N.m (SD 45.7) at task failure]. Power recovered by 5 min, whereas MVC did not recover, and at 10 min was only approximately 85% of baseline. Isometric MVC motor unit activation was approximately 95% at rest and was unchanged at task failure (approximately 96%), but a small amount of failure was apparent between 1.5 and 10 min of recovery (approximately 87 to approximately 91%). Half relaxation time measured from a 50-Hz isometric tetanus was significantly prolonged by approximately 33% immediately after task failure but recovered by 1.5 min. A decline in the 10- to 50-Hz ratio of the evoked isometric contractions was observed at 5 and 10 min of recovery, which suggests excitation-contraction coupling impairment. Changes in velocity and half relaxation time during the protocol were strongly and negatively correlated (r = -0.85). Thus mainly peripheral mechanisms were implicated in the substantial depression but relatively fast recovery of isotonic power. Furthermore, isometric muscle contractile properties were related to some, but not all, changes in isotonic function.  相似文献   

20.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号