首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crustacean sinus gland (SG) is a well-defined neuroendocrine site that produces numerous hemolymph-borne agents including the most complex class of endocrine signaling molecules-neuropeptides. Via a multifaceted mass spectrometry (MS) approach, 70 neuropeptides were identified including orcokinins, orcomyotropin, crustacean hyperglycemic hormone (CHH) precursor-related peptides (CPRPs), red pigment concentrating hormone (RPCH), pigment dispersing hormone (PDH), proctolin, RFamides, RYamides, and HL/IGSL/IYRamide. Among them, 15 novel orcokinins, 9 novel CPRPs, 1 novel orcomyotropin, 1 novel Ork/Orcomyotropin-related peptide, and 1 novel PDH were de novo sequenced via collision induced dissociation (CID) from the SG of a model organism Callinectes sapidus. Electron transfer dissociation (ETD) was used for sequencing of intact CPRPs due to their large size and higher charge state. Capillary isoelectric focusing (CIEF) was employed for separation of members of the orcokinin family, which is one of the most abundant neuropeptide families observed in the SG. Collectively, our study represents the most complete characterization of neuropeptides in the SG and provides a foundation for future investigation of the physiological function of neuropeptides in the SG of C. sapidus.  相似文献   

2.
The crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide. This technique also detected corazonin, a well-known insect hormone, in the POs for the first time. However, most mass spectral peaks did not correspond to previously known peptides. To characterize and identify these novel peptides, we performed MALDI postsource decay (PSD) and electrospray ionization (ESI) MS/MS de novo sequencing of peptides fractionated from PO extracts. We characterized a truncated form of previously identified TNRNFLRFamide, NRNFLRFamide. In addition, we sequenced five other novel peptides sharing a common C-terminus of RYamide from the PO tissue extracts. High K+ depolarization of isolated POs released many peptides present in this tissue, including several of the novel peptides sequenced in the current study.  相似文献   

3.
Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8 ± 86.7 fmol/mg protein) and SGCs (497.8 ± 49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed.  相似文献   

4.
Summary

The present study deals with the location of the vitellogenesis inhibiting hormone (VIH)-producing cells in the eyestalk of the lobster Homarus americanus. In the present study, the neurosecretory pathways of VIH in Homarus, have been described immunocytochemically by use of a mouse serum against Homarus VIH. The location of the VIH cells was compared with the location of the crustacean hyperglycemic hormone (CHH) cells visualized by a rabbit serum raised against CHH of the crayfish Astacus leptodactylus. Immunocytochemical detection procedures, both at the light and electron microscopic level, revealed frequent but not complete co-localization of VIH and CHH in a variable number of the same group of perikarya. In the sinus gland, both neuropeptides were mostly demonstrated in distinct axonal endings characterized by different granule types. Postulations on the biosynthesis of these factors and suggestions concerning the processing of both neurohormones have been made.  相似文献   

5.
甲壳动物高血糖激素家族生理功能研究进展   总被引:6,自引:1,他引:5  
甲壳动物高血糖激素家族是甲壳动物特有的神经多肽激素家族,主要由眼柄的X-器窦腺复合体(XO-SG)合成与分泌,包括高血糖激素(CHH)、蜕皮抑制激素(MIH)、性腺抑制激素(GIH)和大颚器抑制激素(MOIH),协同调控着甲壳动物的生长、繁殖与蜕皮等生理生化过程.本文就目前CHH家族神经肽的功能研究,包括功能研究的方法、各个激素的功能以及分泌调控等研究进展作一综述.  相似文献   

6.
The crustacean hyperglycemic hormone (CHH) peptides regulate diverse physiological processes from reproduction to metabolism and molting in arthropods. In insects, the ion transport peptides (ITP), also members of the CHH family, have only been implicated in ion transport. In this study, we sequenced a nucleotide fragment spanning the conserved A1/A2 region of the putative CHH/ITP gene. This fragment was amplified from larval cDNA of the tobacco hornworm, Manduca sexta and showed a high degree of sequence conservation with the same region from other insects and, to a lesser degree, with that of crustacean species, suggesting the presence of a Manduca-specific CHH/ITP mRNA (MasITP mRNA). CHH-like immunocytochemical analyses with two crustacean antisera (from Carcinus maenas and Cancer pagurus) identified the presence of CHH-like immunoreactivity in nervous tissue of all developmental stages, but not in the gut of M. sexta. Specifically, CHH-like peptides localized to paired type IA2 neurosecretory cells of the pars lateralis of the brain (projecting ipsilaterallly to the corpora cardiaca-allata complex) and to neurosecretory cells and transverse nerves of the ventral nerve cord in larvae, pupae, and adults. The distribution of the putative MasITP peptide shifted during development in a manner consistent with metamorphic reorganization. A comparison of hemolymph equivalents of CHH detected by enzyme-linked immunosorbent assay with CHH-like immunoreactivity in transverse nerves provided evidence for the release of MasITP from the transverse nerves into the hemolymph at insect ecdysis. These data suggest the presence of an insect ITP in M. sexta and a role for this hormone during ecdysis. This research was funded by the National Institutes of Health (MBRS SCORE Program-NIGMS) to M.F. (grant no. 2S06 GM52588-09), by the National Center on Minority Health and Health Disparities (grant no. 5P20-MD000262), an NIH RISE graduate fellowship to A.L.D. (5 R25 GM59298), an NIH PREP fellowship to C.C.H. and M.A.U. (5 R25 GM64078), an NSF CSU LS-AMP fellowship to C.C.H. (HRD-9802113), and by NIH MBRS-MARC to M.D.P. (T34 GM08574) and NIH MA/MS-PhD Bridge Scholarship to A.L.D. and C.C.H. (5R25 GM48972).  相似文献   

7.
Isomerization of the third amino acid residue (a phenylalanine) of crustacean hyperglycemic hormone (CHH) has been previously reported to occur as a late step of hormone precursor maturation in a few neurosecretory cells in the X-organ-sinus gland complex of the crayfish Orconectes limosus. In the present report, using conformation-specific antisera combined with immunogold labeling, we have studied, at the ultrastructural level, the distribution of L- and D-CHH immunoreactivity in CHH-secreting cells of the crayfish Astacus leptodactylus. Two CHH-secreting cell populations were observed, the first one (L-cells), the most numerous, exhibited only labeling for L-CHH. In the second one (D-cells), four secretory granule populations were distinguished according to their labeling: unlabeled, either L- or D- exclusively or both L- and D-granules. Labeling quantification by image analysis in D-cells showed a marked increase in D-labeling from the cell body to the axon terminal. However some L- and mixed granules remain in axon terminals. Our results demonstrate that Phe3 isomerization of CHH occurs within the secretory granules of specialized neurosecretory cells and progresses as the granules migrate along the axonal tract. The observation that not all the CHH synthesized is isomerized, and the great variability in the proportion of L- and D-immunoreactivity in granules in every cell region may suggest an heterogeneous distribution of the putative enzyme involved in Phe3 isomerization, a peptide isomerase, within the secretory pathway.  相似文献   

8.
The crustacean hyperglycemic hormone (CHH) is synthesized as part of a larger preprohormone in which the sequence of CHH is N-terminally flanked by a peptide for which the name CPRP (CHH precursor-related peptide) is proposed. Both CHH and CPRP are present in the sinus gland, the neurohemal organ of neurosecretory cells located in the eyestalk of decapod crustaceans. This paper describes the isolation and sequence analysis of CPRPs isolated from sinus glands of the crab Carcinus maenas, the crayfish Orconectes limosus and the lobster Homarus americanus. The published sequence of "peptide H" isolated from the land crab, Cardisoma carnifex, has now been recognized as a CPRP in this species. Sequence comparison reveals a high level of identity for the N-terminal region (residues 1-13) between all four peptides, while identity in the C-terminal domain is high between lobster and crayfish CPRP on the one hand, and between both crab species on the other. Conserved N-terminal residues include a putative monobasic processing site at position 11, which suggests that CPRP may be a biosynthetic intermediate from which a potentially bioactive decapeptide can be derived.  相似文献   

9.
From sinus glands of the Australian crayfish Cherax destructor, two genetic variants of the crustacean hyperglycemic hormone (CHH) were isolated by HPLC and fully characterized by mass spectrometry and Edman sequencing. Both CHH A (8350.38 Da) and CHH B (8370.34 Da) consist of 72 amino acid residues, with pyroGlu as N-terminus and an amidated (Val-NH2) C-terminus. They differ in 14 residues (81% identity). Both sequences are significantly different from those of the hitherto known three CHHs of Astacoidea species (Northern hemisphere crayfish), which among themselves are extremely conserved. This may reflect the long, separate evolution of the Astacoidea lineage and the Parastacoidea (Southern hemisphere crayfish) lineage, to which Cherax belongs. CHH A and CHH B genes are expressed at comparable levels, as indicated by the similar amounts of mature peptides in the sinus gland. In addition to each of the major peptides, which share the identical N-terminal tripeptide pyroGlu-Val-L-Phe, one chiral isoform containing pyroGlu-Val-D-Phe was identified. Compared to the main peptides, the amounts of the D-isoforms are lower, but significant, amounting to 30-40% of L-isoforms. These results demonstrate that two genes can give rise to a total of four different peptides in the secretory terminals of the sinus gland. All peptides gave a highly significant hyperglycemic in vivo response in C. destructor.  相似文献   

10.
Fu Q  Christie AE  Li L 《Peptides》2005,26(11):2137-2150
Crustacean hyperglycemic hormone (CHH) precursor-related peptides (CPRPs) are produced during the proteolytic processing of CHH preprohormones. Currently, the physiological roles played by CPRPs are unknown. Due to their large size, direct mass spectrometric sequencing of intact CPRPs is difficult. Here, we describe a novel strategy for sequencing Cancer productus CPRPs directly from a tissue extract using nanoflow liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Four novel CPRPs were characterized with the aid of MS/MS de novo sequencing of 27 truncated CPRP peptides. Extensive modifications (methionine oxidation and carboxy-terminal methylation) were identified in both the full-length and truncated peptides. To investigate the origin of the modifications and truncations, a full-length CPRP was synthesized and subjected to the same storage and extraction protocols used for the characterization of the native peptides. Here, some methionine oxidation was seen, however, no methylation or truncation was evident suggesting much of the chemical complexity seen in the native CPRPs is unlikely due to a sample preparation artifact. Collectively, our study represents the most complete characterization of CPRPs to date and provides a foundation for future investigation of CPRP function in C. productus.  相似文献   

11.
Five novel neuropeptides, designated Pm-sgp-I to -V, of the crustacean hyperglycemic hormone (CHH) family have been identified from the giant tiger prawn Penaeus monodon by isolation of the preprohormone genes from an eyestalk complementary DNA library. On the basis of sequence similarity, the encoded peptides have been classified as CHH-like type I hormones, which include all known CHHs and the molt-inhibiting hormone (MIH) of the lobster Homarus americanus. Consistent with CHH type I preprohormones, the Pm-sgp precursors include a signal peptide, a CHH precursor-related peptide (CPRP), and the CHH-like hormone. Analysis by electrospray ionization-Fourier transform mass spectrometry enabled the neuropeptide complement of individual sinus glands to be resolved. It also confirmed the presence of the five Pm-sgp neuropeptides within the sinus gland of an individual animal, in that the masses observed were consistent with those predicted from the gene sequence of the Pm-sgps after posttranslational modification. These modifications included cleavage of the signal peptide and precursor protein, carboxy-terminal amidation, and formation of three disulfide bridges. Analysis of crude extracts of single sinus glands from different animals revealed variation in neuropeptide content and will provide a tool for determining whether the content varies as a function of the physiological state of the animal. Received March 26, 1999; accepted September 10, 1999.  相似文献   

12.
The neuropeptides of the crustacean hyperglycaemic hormone (CHH) family are encoded by a multigene family and are involved in a wide spectrum of essential functions. In order to characterize CHH family peptides in one of the last groups of decapods not yet investigated, CHH was studied in two anomurans: the hermit crab Pagurus bernhardus and the squat lobster Galathea strigosa. Using RT-PCR and 3' and 5' RACE methods, a preproCHH cDNA was cloned from the major neuroendocrine organs (X-organs) of these two species. Hormone precursors deduced from these cDNAs in P. bernhardus and G. strigosa are composed of signal peptides of 29 and 31 amino acids, respectively, and CHH precursor-related peptides (CPRPs) of 50 and 40 amino acids, respectively, followed by a mature hormone of 72 amino acids. The presence of these predicted CHHs and their related CPRPs was confirmed by performing MALDI-TOF mass spectrometry on sinus glands, the main neurohaemal organs of decapods. These analyses also suggest the presence, in sinus glands of both species, of a peptide related to the moult-inhibiting hormone (MIH), another member of the CHH family. Accordingly, immunostaining of the X-organ/sinus gland complex of P. bernhardus with heterologous anti-CHH and anti-MIH sera showed the presence of distinct cells producing CHH and MIH-like proteins. A phylogenetic analysis of CHHs, including anomuran sequences, based on maximum-likelihood methods, was performed. The phylogenetic position of this taxon, as a sister group to Brachyura, is in agreement with previously reported results, and confirms the utility of CHH as a molecular model for understanding inter-taxa relationships. Finally, the paraphyly of penaeid CHHs and the structural diversity of CPRPs are discussed.  相似文献   

13.
Molting processes in crustaceans are regulated by ecdysteroids produced in the molting gland (Y-organ), and molting is indirectly controlled by circulating factors that inhibit the production of these polyhydroxylated steroids. Two of these regulatory factors are the neuropeptides molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). CHH appears to inhibit ecdysteroidogenesis in the Y-organ through the activation of a receptor guanylyl cyclase. The signaling pathway activated by MIH, however, remains a subject of controversy. It is clear that neuropeptides inhibit ecdysteroidogenesis by simultaneously suppressing ecdysteroid biosynthetic processes, protein synthesis, and uptake of high density lipoproteins. Data demonstrate that cAMP is the primary regulator of critical catabolic, anabolic, and transport processes, which ultimately support the capacity for ecdysteroid production by the Y-organ. While cAMP also regulates acute ecdysteroidogenesis to some extent, data indicate that cGMP is the primary signaling molecule responsible for acute inhibition by neuropeptides. It is clear that the regulatory roles filled by cAMP and cGMP are conserved among decapod crustaceans. It is unknown if these complementary second messengers are linked in a single signaling pathway or are components of independent pathways activated by different factors present in extracts of eyestalk ganglia.  相似文献   

14.
The profiles of circulating ecdysteroids during the three molt cycles prior to adulthood were monitored from the juvenile blue crab, Callinectes sapidus. Ecdysteroid patterns are remarkably similar in terms of peak concentrations ranging between 210–330 ng/ml hemolymph. Analysis of hemolymph at late premolt stage revealed six different types of ecdysteroids with ponasterone A (PoA) and 20‐OH ecdysone (20‐OH E) as the major forms. This ecdysteroid profile was consistent in all three molt cycles. Bilateral eyestalk ablation (EA) is a procedure that removes inhibitory neurohormones including crustacean hyperglycemic hormone (CHH) and molt‐inhibiting hormone (MIH) and often results in precocious molting in crustaceans. However, the inhibitory roles of these neuropeptides in vivo have not yet been tested in C. sapidus. We determined the regulatory roles of CHH and MIH in the circulating ecdysteroid from ablated animals through daily injection. A daily administration of purified native CHH and MIH at physiological concentration maintained intermolt levels of ecdysteroids in the EA animals. This suggests that Y organs (YO) require a brief exposure to CHH and MIH in order to maintain the low level of ecdysteroids. Compared to intact animals, the EA crabs did not exhibit the level of peak ecdysteroids, and the major ecdysteroid turned out to be 20‐OH E, not PoA. These results further underscore the important actions of MIH and CHH in ecdysteroidogenesis, as they not only inhibit, but also control the composition of output of the YO activity. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
16.
The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the levels of serotonin and CHH on thermal stress in the blue swimmer crab, P. pelagicus.  相似文献   

17.
Our knowledge concerning the primary structures of crustacean neuropeptides has been broadened considerably during the last few years and has greatly contributed to the successful application of molecular biological techniques to crustacean neuroendocrine research. In this review, we compare and discuss the preprohormones of the Red Pigment Concentrating Hormone (RPCH), the Pigment-Dispersing Hormone (PDH) and the different members of the Crustacean Hyperglycemic Hormone, Molt-Inhibiting and Gonad-Inhibiting Hormone family (CHH/MIH/ GIH peptide family), recently elucidated by cloning and sequencing of the respective cDNAs. Expression studies, using in situ hybridization, Northern blots and RNase protection assays, have demonstrated that the mRNAs encoding some of the aforementioned preprohormones (for example, preproPDH and preproCHH) are not only expressed in the eyestalk but also in other parts of the central nervous system. The combination of molecular biological techniques with (bio)chemical and immunochemical methods provides elegant tools to study neuropeptides at the level of mRNA and peptide in individual animals during different physiological conditions. The fundamental knowledge obtained by such a combined approach will give detailed insight into how neuropeptides are involved in the adaptation of Crustacea to a broad spectrum of natural and aquacultural conditions.  相似文献   

18.
Mud crab Scylla paramamosain is a commercially important species widely cultured in China. It is well known that the eyestalk regulates reproductive activities in crustaceans. In our previous research, we found that the miR‐34 expression level in male eyestalk was significantly higher than that in females. Thus, we assumed that it may play an important role in regulating reproduction. In this study, we used bioinformatic tools to identify the target genes of miR‐34 in eyestalk. Six reproduction‐related genes with an intact 3′‐untranslated region (UTR), including molt‐inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), vitellogenesis‐inhibiting hormone, red pigment concentrating hormone, ecdysone receptor (EcR), and farnesoic acid methyltransferase (FAMeT) were identified. When the 3′‐UTR plasmid vectors of the six genes were cotransfected with miR‐34 mimics into 293FT cells, respectively, the luciferase activities of four genes (MIH, CHH, EcR, and FAMeT) were significantly decreased compared with that in the control group; on the contrary, when the six plasmid vectors were cotransfected with the miR‐34 inhibitor respectively, the luciferase activities of four genes (MIH, CHH, EcR, and FAMeT) were significantly higher than that in the control group. When agomiR‐34 and antagomiR‐34 were injected into the eyestalk respectively in vivo, the expression levels of the MIH, CHH, EcR, and FAMeT genes were detected by a quantitative real‐time polymerase chain reaction. The results showed that agomiR‐34 suppressed the expression of the four genes, whereas antagomiR‐34 enhanced their expression. These experimental results confirmed our hypothesis that miR‐34 may indirectly regulate reproduction via binding to the 3′‐UTRs of MIH, CHH, EcR, and FAMeT genes and suppressing their expression.  相似文献   

19.
Crustacean hyperglycemic hormone (CHH) is a pleiotropic neuropeptide that regulates carbohydrate and lipid metabolism, molting, reproduction, and osmoregulation in decapod crustaceans. CHH elevates glucose levels in the hemolymph by stimulating glycogenolysis in target tissues. It also inhibits ecdysteroidogenesis in the molting gland, or Y-organ (YO), possibly as a response to environmental stress. CHH acts via binding to a membrane receptor guanylyl cyclase, which is expressed in most tissues, including the YO. Large amounts of biologically active neuropeptide are required to investigate the mechanism of CHH signaling in the YO. Consequently, the eyestalk ganglia CHH (EG-CHH) isoform was cloned into a yeast (Pichia pastoris) expression vector to express recombinant mature peptide (rEG-CHH) with or without a C-terminal c-Myc/polyhistidine tag. Yeast cultures with untagged or tagged rEG-CHH inhibited ecdysteroidogenesis in YOs from European green crab (Carcinus maenas) 36% (P < 0.002) and 51% (P < 0.006), respectively. Purified tagged EG-CHH inhibited YO ecdysteroidogenesis 32% (P < 0.002), but lacked hyperglycemic activity in vivo. This is the first report of recombinant EG-CHH inhibiting YO ecdysteroidogenesis. The data suggest that the tagged recombinant peptide can be used to elucidate the CHH signaling pathway in the crustacean molting gland.  相似文献   

20.
Nithya  M.  Munuswamy  N. 《Hydrobiologia》2002,486(1):325-333
Localization of crustacean hyperglycemic hormone (CHH) activity in the brain ganglia of Streptocephalus dichotomus was demonstrated by immunocytochemical method. For this, two different rabbit antisera, one raised against a crayfish Orconectus limosus, and the other with a crab Carcinus maenas, were used. Positive immunoreactivity was recorded with the antibody raised against Orconectus limosus CHH. However, the antibody raised against the CHH of the crab, Carcinus maenas failed to show any cross-reactivity. The biological specificity of these peptides was further confirmed by immunoblotting and immunodiffusion studies performed with the partially purified CHH. The results obtained with the immunodot-blotting and immunodiffusion studies with CHH, further confirmed the immunocytochemical studies. Bioassay experiments performed with a freshwater prawn, Macrobrachium rosenbergii indicate the interspecific biological activity of this neuropeptide. The present study indicates that besides the sinus gland, there are other sites of CHH synthesis and release in the brain ganglia of S. dichotomus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号