首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient membrane permeabilization by application of high electric field intensity pulses on cells (electropermeabilization) depends on several physical parameters associated with the technique (pulse intensity, number, and duration). In the present study, electropermeabilization is studied in terms of flow of diffusing molecules between cells and external medium. Direct quantification of the phenomenon shows that electric field intensity is a critical parameter in the induction of permeabilization. Electric field intensity must be higher than a critical threshold to make the membrane permeable. This critical threshold depends on the cell size. Extent of permeabilization (i.e., the flow rate across the membrane) is then controlled by both pulse number and duration. Increasing electric field intensity above the critical threshold needed for permeabilization results in an increase membrane area able to be permeabilized but not due to an increase in the specific permeability of the field alterated area. The electroinduced permeabilization is transient and disappears progressively after the application of the electric field pulses. Its life time is under the control of the electric field parameters. The rate constant of the annealing phase is shown to be dependent on both pulse duration and number, but is independent of electric field intensity which creates the permeabilization. The phenomenon is described in terms of membrane organization transition between the natural impermeable state and the electro-induced permeable state, phenomenon only locally induced for electric field intensities above a critical threshold and expanding in relation to both pulse number and duration.  相似文献   

2.
The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect to the electric field direction, both numerically and analytically. Changing the orientation of the cells decreases the induced transmembrane potential from its maximum value when the longest axis of the cell is parallel to the electric field, to its minimum value when the longest axis of the cell is perpendicular to the electric field. The dependency on orientation is more pronounced for elongated cells while it is negligible for spherical cells. The part of the cell membrane where a threshold transmembrane potential is exceeded represents the area of electropermeabilization, i.e. the membrane area through which the transport of molecules is established. Therefore the surface exposed to the transmembrane potential above the threshold value was calculated. The biological relevance of these theoretical results was confirmed with experimental results of the electropermeabilization of plated Chinese hamster ovary cells, which are elongated. Theoretical and experimental results show that permeabilization is not only a function of electric field intensity and cell size but also of cell shape and orientation.  相似文献   

3.
Electropermeabilization designates the use of electric pulses to overcome the barrier of the cell membrane. This physical method is used to transfer anticancer drugs or genes into living cells. Its mechanism remains to be elucidated. A position-dependent modulation of the membrane potential difference is induced, leading to a transient and reversible local membrane alteration. Electropermeabilization allows a fast exchange of small hydrophilic molecules across the membrane. It occurs at the positions of the cell facing the two electrodes on an asymmetrical way. In the case of DNA transfer, a complex process is present, involving a key step of electrophoretically driven association of DNA only with the destabilized membrane facing the cathode. We report here at the membrane level, by using fluorescence microscopy, the visualization of the effect of the polarity and the orientation of electric pulses on membrane permeabilization and gene transfer. Membrane permeabilization depends on electric field orientation. Moreover, at a given electric field orientation, it becomes symmetrical for pulses of reversed polarities. The area of cell membrane where DNA interacts is increased by applying electric pulses with different orientations and polarities, leading to an increase in gene expression. Interestingly, under reversed polarity conditions, part of the DNA associated with the membrane can be removed, showing some evidence for two states of DNA in interaction with the membrane: DNA reversibly associated and DNA irreversibly inserted.  相似文献   

4.
Cell poration and cell fusion using an oscillating electric field.   总被引:14,自引:5,他引:9       下载免费PDF全文
It has been shown in previous studies that cell poration (i.e., reversible permeabilization of cell membrane) and cell fusion can be induced by applying a pulse (or pulses) of high-intensity DC (direct current) electric field. Recently we suggested that such electro-poration or electro-fusion can also be accomplished by using an oscillating electric field. The DC field relies solely on the dielectric breakdown of the cell membrane to induce cell fusion. The oscillating field, on the other hand, can produce not only a dielectric breakdown, but also a sonicating motion in the membrane that could result in a structural fatigue. Thus, a combination of a DC field and an oscillating field is expected to enhance the efficiency of cell poration and cell fusion. This study is an experimental test of such an idea. Here, pulses of high-intensity, DC-shifted RF (radio frequency) electric field were used to induce cell poration and cell fusion. The fusion experiments were done on human red blood cells. The poration experiments were done on a fibroblast cell line using a molecular probe (which is a DNA plasmid containing the marker gene chloramphenicol acetyltransferase, CAT) and assayed by a gene transfection technique. It was found that the pulsed RF field is highly efficient in both cell fusion and cell poration. Also, in comparison with electro-poration using a DC field, the RF field results in a higher percentage of cells surviving the exposure to the electric field.  相似文献   

5.
Cell swelling and blebbing has been commonly observed following nanosecond pulsed electric field (nsPEF) exposure. The hypothesized origin of these effects is nanoporation of the plasma membrane (PM) followed by transmembrane diffusion of extracellular fluid and disassembly of cortical actin structures. This investigation will provide evidence that shows passive movement of fluid into the cell through nanopores and increase of intracellular osmotic pressure are not solely responsible for this observed phenomena. We demonstrate that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion and hydrolysis are critical steps in the chain reaction leading to cellular blebbing and swelling. PIP2 is heavily involved in osmoregulation by modulation of ion channels and also serves as an intracellular membrane anchor to cortical actin and phospholipase C (PLC). Given the rather critical role that PIP2 depletion appears to play in the response of cells to nsPEF exposure, it remains unclear how its downstream effects and, specifically, ion channel regulation may contribute to cellular swelling, blebbing, and unknown mechanisms of the lasting “permeabilization” of the PM.  相似文献   

6.
Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.  相似文献   

7.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

8.
Electropermeabilization is obtained when the membrane potential difference reaches a critical threshold. This is performed by submitting cells to an external electric field pulse. The field modulates the endogenous potential difference in a cell-size-dependent way. Computer simulations predict that large cells would be specifically permeabilized in a mixture with smaller cells. This was examined on a mixture of Chinese hamster ovary (CHO) cells and erythrocytes. CHO cells were permeabilized to Trypan blue without any occurrence of haemolysis. A similar 'size' specificity was observed on blood samples. This agreement between prediction and experimental observation indicates that induction of electropermeabilization is mainly under the control of the size of the target cell. Its physiology plays only a minor role, if any. Treating blood with 10 square wave pulses lasting 100 microseconds of an intensity of 1.6 kV/cm induced the permeabilization of 70% of the leucocytes (polymorphs and monocytes) but did not affect erythrocytes. No washing of the sample was needed in a procedure in which cells were pulsed in the plasma. A flow electropulsing process allows the treatment of large blood volumes under conditions where cells are kept viable. These results show that electropermeabilization could be used as an effective way to obtain immunocompatible drug vehicles.  相似文献   

9.
Electric field induced permeabilization of cell membranes is an important technique for gene transfection and cell hybridization. Mechanistic studies of this process revealed that the uptake of fluorescent indicator by plant protoplasts occurs predominantly on the hemisphere facing the positive electrode, while in erythrocyte ghosts the probes exit through the hemisphere facing the negative electrode. To reconcile these observations symmetrical pore formation and a mechanism of molecular exchange by electroosmosis has been proposed. In light of these controversial observations, we conducted a systematic study of electroporation of NIH3T3 cells with varying electric field strength, waveform and frequency. Our data revealed that (i) symmetrical permeabilization of the cell membrane occurs only with bipolar a.c. fields. (ii) When a critical membrane breakdown potential, Vc, is applied using either an unipolar a.c. fields or a single d.c. square pulse, the cell membrane becomes permeabilized only at the hemisphere facing the positive electrode. (iii) When the pulse-induced membrane potential, Vm, is approximately equal to or larger than the intrinsic membrane potential (i.e. using d.c. or unipolar a.c. field), asymmetric permeabilization was observed with the hemisphere facing the positive electrode being most permeable. (iv) The rate of fluorescent indicator uptake is dependent on the concentration of the indicator. These results indicate that electro-permeabilization of cell membranes is affected by its resting potential and that electroosmosis is not the dominant mechanism for the cellular uptake of foreign molecules in electroporation.  相似文献   

10.
Electropermeabilization is a nonviral method used to transfer genes into living cells. Up to now, the mechanism is still to be elucidated. Since cell permeabilization, a prerequired for gene transfection, is triggerred by electric field, its characteristics should depend on its vectorial properties. The present investigation addresses the effect of pulse polarity and orientation on membrane permeabilization and gene delivery by electric pulses applied to cultured mammalian cells. This has been directly observed at the single-cell level by using digitized fluorescence microscopy. While cell permeabilization is only slightly affected by reversing the polarity of the electric pulses or by changing the orientation of pulses, transfection level increases are observed. These last effects are due to an increase in the cell membrane area where DNA interacts. Fluorescently labelled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable and is not affected by pulses of reversed polarities. Under such conditions, DNA interacts with the two sites of the cell facing the two electrodes. When changing both the pulse polarity and their direction, DNA interacts with the whole membrane cell surface. This is associated with a huge increase in gene expression. This present study demonstrates the relationship between the DNA/membrane surface interaction and the gene transfer efficiency, and it allows to define the experimental conditions to optimize the yield of transfection of mammalian cells.  相似文献   

11.
Electrochemotherapy is a novel technique to enhance the delivery of chemotherapeutic drugs into tumor cells. In this procedure, electric pulses are delivered to cancerous cells, which induce membrane permeabilization, to facilitate the passage of cytotoxic drugs through the cell membrane. This study examines how electric fields interact with and polarize a system of cells. Specifically, we consider how cell density and organization impact on induced cell transmembrane potential due to an external electric field. First, in an infinite volume of spherical cells, we examined how cell packing density impacts on induced transmembrane potential. With high cell density, we found that maximum induced transmembrane potential is suppressed and that the transmembrane potential distribution is altered. Second, we considered how orientation of cell sheets and strands, relative to the applied field, affects induced transmembrane potential. Cells that are parallel to the field direction suppress induced transmembrane potential, and those that lie perpendicular to the applied field potentiate its effect. Generally, we found that both cell density and cell organization are very important in determining the induced transmembrane potential resulting from an applied electric field.  相似文献   

12.
Interaction of two stains (propidium iodide and ethidium bromide) with electropermeabilized living Chinese hamster ovary cells is observed using an ultrafast fluorescence image acquisition system. The computing process is linked to an ultra-low-light intensifying camera working with a very short time resolution (3.33 ms per image). Altered parts of the cell membrane were identified via the enhancement in fluorescence intensity of the dyes. They reflect the electropermeabilized part of the membrane in which free flow of dye occurred. Images of the fluorescence interaction patterns of the two dyes, in a maximum 20-ms time lag after pulsation, reveal asymmetrical permeabilization of the cell membrane. For electric field intensities higher than a first threshold value, permeabilization is always observed on the anode-facing side of the cell. For electric field intensities over a second higher threshold value, the two electrode-facing hemispheres of the cell are permeabilized, the hemisphere facing the anode being most permeable. These data support the conclusion that electropermeabilization of living cell membrane is affected by its resting potential. The asymmetrical pattern of the dye interaction is not dependent on the nature or concentration of the dye, the ionic strength of the pulsing buffer, or the duration of the pulse. The field intensity determines the fraction of the membrane in which molecular alterations can occur. The extent of alteration in this localized region is determined by the duration of the pulse when a single pulse in the millisecond time range is applied.  相似文献   

13.
Ramos C  Teissié J 《Biochimie》2000,82(5):511-518
The molecular bases of the exocytosis process remain poorly known. Many proteins have been recognized to play key roles in the machinery. Their functions are well characterized in the specificity of the docking processes. Forces involved in the merging of the two partners must take into account the physics of membrane interfaces. The target membrane and the vesicle are both electrically charged interfaces. Strong electrostatic fields are triggered when they are brought in close neighborhood. These fields are high enough to induce an electropermeabilisation process. It is now well known that when applied on a cell, an external field induces a modulation of the transmembrane potential difference. When high enough the transmembrane potential may induce a membrane destabilisation. This results in a free exchange of polar molecules across well defined parts of the cell surface. Furthermore, when permeabilization is present on two cells, if those parts of the cell surfaces are brought in close contact, membrane merging occurs spontaneously. Cell fusion results from this membrane coalescence. The similarity with what is taking place in exocytosis is striking. The present review describes the state-of-the-art in the knowledge on electrofusion. It is emphasized that it results from electropermeabilisation and not from a direct effect of the external field. A local destabilisation of the vesicle membrane results from electrostatic interactions while keeping unaffected its viability. Such processes appear relevant for what takes place during exocytosis.  相似文献   

14.
The permeabilization and gene transfer phenomena in terms of the effect of electric field and cell parameters are reviewed in this paper. Electropermeabilization designates the use of short high‐voltage pulses to overcome the barrier of the cell membrane. A position‐dependent modulation of the membrane potential difference is induced, leading to a transient and reversible local membrane alteration. The electro‐induced permeabilization is long lived. A free exchange of hydrophilic molecules takes place across the membrane. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration. This permeabilized state can be used to load cells with a variety of different molecules, either through simple diffusion in the case of small molecules, or through a multi‐step process as is the case for DNA transfer involving the electrophoretically driven association of the macromolecule with the destabilized membrane and its subsequent passage. Electropermeabilization is now in use for the delivery of a large variety of molecules: from ions to drugs, dyes, tracers, antibodies, oligonucleotides, RNA and DNA. While most studies are performed in vitro in cells in culture, an increasing number of data are obtained in vivo on tissues. However, membrane molecular and cell metabolic changes remain for the most part poorly understood. Therefore it is of great importance to elucidate the underlying phenomena both for the in vitro use of the method in terms of efficiency but also for the in vivo use of the method in terms of security.  相似文献   

15.
Control of lipid membrane stability by cholesterol content   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content.  相似文献   

16.
Application of a high electric field to cells in culture has been shown to make them both permeable and fusogenic. The molecular events involved in the phenomenon are still poorly understood. In this study we investigated the effects of the ionic strength of the pulsing buffer on the electropermeabilization and electrofusion of Chinese hamster ovary cells. Increasing the ionic strength of the pulsing medium results in an increase in sieving of transient permeant structures, but decreases the fusion index. Treatment of cells with trypsin or pronase before application of the pulses abolishes the ionic modulation of both electropermeabilization and electrofusion. A similar rate of expansion of permeabilization is obtained whatever the ionic content of the pulsing buffer, and cells fuse even at high ionic strength. This observation lends support to our hypothesis that membrane proteins play a role in electrofusion.  相似文献   

17.
Electrofusion of fibroblasts on the porous membrane   总被引:3,自引:0,他引:3  
Electric fusion of cells is usually performed in two steps: the first is the creation of tight intercellular contact, the second is an application of electric pulses which induce membrane fusion proper. In the present work a new technique of cell electrofusion on the porous film is described. It consists of preliminary cultivation of cell monolayer on the porous film (protein-coated cellophane). Then cells of the same or any other type are added from above to form a second cell layer upon the first one. The pulses of the electric field are applied normally to the plane of the double cell layer to induce cell fusion. After pulse application a picture of mass polynucleation was observed. At the same time we did not obtain fusion of L cells by means of dielectrophoretic electrofusion technique. This difference in efficiency could be explained by the formation of broad zones of membrane contact between the cells adherent to the film, while during intensive dielectrophoresis only the point contacts were revealed. The high-conducting medium for electric treatment providing an efficient fusion on the film and high cell viability was composed. Neither cytochalasin B nor colcemid affected cell fusion noticeably; however the sodium azide (added with 2-deoxyglucose) inhibited fusion completely. The short hypotonic shock after electric treatment enhanced the rate of polycaryon formation.  相似文献   

18.
The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses.  相似文献   

19.
Cell hybridization by electrofusion on filters   总被引:5,自引:0,他引:5  
Electric field pulses induce permeabilization and associated fusogenicity in cell membranes. Electrofusion of cells is usually performed in two steps: the first is the creation of close intercellular contacts; the second is an application of electric pulses that induces membrane fusion. Very large cell contacts can be obtained by a filter aspiration method. A cell monolayer is created by controlled suction on biocompatible filter. No spontaneous fusion results. Just after filtration, electrofusion is obtained by field pulses applied parallel to the filter. Cell viability is not strongly affected and cells recover their spherical shape in the minute time range after filtration. The electrical parameters, the cell density, and the flow rate control fusion. Fusion is obtained with cells of different origins with very different adhesion properties. Hybrid cells are easily formed. This approach appears to be a very efficient method for cell hybridization with an easy-to-use protocol.  相似文献   

20.
Blood vessel dilation starts from activation of the Na/K pumps and inward rectifier K channels in the vessel smooth muscle cells, which hyperpolarizes the cell membrane potential and closes the Ca channels. As a result, the intracellular Ca concentration reduces, and the smooth muscle cells relax and the blood vessel dilates. Activation of the Na/K pumps and the membrane potential hyperpolarization plays a critical role in blood vessel functions. Previously, we developed a new technique, synchronization modulation, to control the pump functions by electrically entraining the pump molecules. We have applied the synchronization modulation electric field noninvasively to various intact cells and demonstrated the field-induced membrane potential hyperpolarization. We further applied the electric field to blood vessels and investigated the field induced functional changes of the vessels. In this paper, we report the results in a study of the membrane potential change in the smooth muscle cells of mesenteric blood vessels in response to the oscillating electric field. We found that the synchronization modulation electric field can effectively hyperpolarize the muscle membrane potential quickly in seconds under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号