首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vitality of fine roots in a Norway spruce stand subjected to application of ammonium sulphate (NS), wood ash (A) and nitrogen-free fertilizer (V) respectively, was investigated using i) vitality classification of fine roots based on morphological characteristics and ii) the triphenyl tetrazolium chloride (TTC) method of estimating dehydrogenase activity.Although the NS-treated areas showed a 30% increase in above-ground production in response to the NS-application, the vitality of the fine-root system in the humus layer appeared to be in a state of deterioration, as indicated by a decrease in fine-root biomass, an increased amount of dead fine (0–1 mm) and small (1–2 mm) roots, a decreased specific root length (SRL = fine root length/fine root dry weight) and an increased dehydrogenase activity. The impact of the the A and V treatments was reflected in a decrease in fine-root biomass and an increase in SRL. The results make it clear that in order to study the vitality of forest trees, both fine-root studies and studies of above-ground tree parts are necessary.  相似文献   

2.
The objective of the present work was to develop a method to distinguish between metabolically inactive and active parts of plant roots. White clover (Trifolium repens L.) roots were stained with 2,3,5-triphenyltetrazolium chloride (TTC) followed by root colour classification with an interactive scanner-based image analysis programme (WinRHIZO). Roots inactivated by boiling were unstained and pale brown, whereas fresh samples with predominantly metabolically active roots turned dark red, red or pale red after staining. A small amount of very young, presumable active roots (0.8% of total active root length) failed to stain red with TTC. The colour analysis of inactive and active roots was based on four colour classes for boiled roots and seven classes for fresh roots, respectively, as defined upon visual examination of images. Pixel colours falling outside the defined classes were allocated to the nearest defined class – an option that increased objectivity and stability and reduced the required number of colour classes. For the fresh white clover roots, 75–86% of the total root length was determined as active, while 3–7% of the boiled roots fell into the same category. The percentage of total root length measured by WinRHIZO that was identified as metabolically active was linearly correlated with the percentage of fresh roots in mixtures of fresh and boiled roots (R2=0.99). Colour classes chosen à priori from one experiment could be used to distinguish fairly satisfactorily between active and inactive roots of another white clover cultivar grown under other conditions, but failed to classify activity in ryegrass (Lolium multiflorum Lam.) root samples. In the latter case, colour classes needed to be re-defined in order to produce reliable data. Our work shows that WinRHIZOs colour identification sub-module provides a new promising tool to classify root activity as identified after staining with TTC, but colour classes must be carefully evaluated on every new occasion.  相似文献   

3.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

4.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

5.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

6.
The adenylate energy charge, production of ethanol and lactate, and nitrate reductase activity were determined in order to study the influence of different nitrogen sources on the metabolic responses of roots of Carex pseudocyperus L. and Carex sylvatica HUDS. exposed to anaerobic nutrient solutions. Determination of adenylates was carried out by means of a modified HPLC technique. Total quantity of adenylates was higher in Carex pseudocyperus than in Carex sylvatica under all conditions. In contrast, the adenylate energy charge was only slightly different between the species and decreased more or less in relation to the applied nitrogen source under oxygen deficiency. The adenylate energy charge in roots of plants under nitrate nutrition showed a smaller decrease under anaerobic environmental conditions than plants grown with ammonium or nitrate/ammonium. Roots of nitrate-fed plants showed a lower ethanol and lactate production than ammonium/nitrate- and ammonium-fed plants. Ethanol production was higher in C. pseudocyperus, formation of lactate was lower compared to that in Carex sylvatica. The activity of enzymes involved in fermentation processes (ADH, LDH and PDC) was enhanced significantly after 24 hours of exposure to anaerobic nutrient solutions in roots of both species. The induction of these enzymes was only slightly influenced by different nitrogen supply. In vivo nitrate reductase activity increased almost 3-fold compared to the aerobic treatment in both species and overcompensated loss of NADH reoxidation capacity caused by decrease of ethanol and lactate development. Induction of in vitro nitrate reductase activity was enhanced 313% in C. pseudocyperus and 349% in C. sylvatica under anaerobic environmental conditions and nitrate supply. These results indicate that nitrate may serve as an alternative electron acceptor in anaerobic plant root metabolism and that the nitrate-supported energy charge may be due to an accelerated glycolytic flux resulting from a more effective NADH reoxidation capacity by nitrate reduction plus fermentation than by fermentation alone.Abbreviations ADH alcohol dehydrogenase - AEC adenylate energy charge - DMSO dimethyl sulfoxide - EDTA ethylen diamine tetraacetic acid - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - NRA nitrate reductase activity - PCA perchloric acid - PDC pyruvate decarboxylase - PVP polyvinylpyrrolidone - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid, Tris-tris(hydroxymethyl)aminomethane  相似文献   

7.
An investigation of fine (< 1 mm in diameter) and small (1–2 mm in diameter) roots in the organic soil layer was carried out in a Norway spruce forest stand with different treatments of water and nutrients, including control (C); ammonium sulphate application (NS); nitrogen-free fertilization (V); irrigation with liquid fertilization (a complete nutrient solution) (IF); NS followed by artificial drought (ND); V followed by artificial drought (VD). In order to evaluate the vitality and function of the fine roots, the following approaches were used: i) classification of fine roots, based on morphological characteristics; ii) nutrient uptake bioassay, using 32P-phosphate and 35S-sulphate; iii) nutrient concentration in fine roots and its relation to nutrient uptake. The NS treatment showed effects on the fine and small roots, with a decrease in amount of living roots, and a decrease in the total amount of fine and small roots. The VD treatment resulted in increased amounts of living small roots, while the ND treatment showed the opposite, as compared with the V and NS treatments, respectively. The uptake of P was negatively related to the P supply, with a higher P uptake for C and NS fine roots than for IF and V fine roots. The specific root length (SRL, m g-1 DW) decreased for NS fine roots and increased for IF fine roots, indicating a further increase in uptake for NS roots and a decreased uptake for IF roots if calculated on a root length basis. So far, the NS and IF treatments maintain a considerable increase in above-ground biomass with a significantly reduced root biomass and standing crop.  相似文献   

8.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

9.
The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants’ capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.  相似文献   

10.
A dihydropyrimidine dehydrogenase mutant of Pseudomonas chlororaphis ATCC 17414 was isolated and characterized in this study. Initially, reductive catabolism of uracil was confirmed to be active in ATCC 17414 cells. Following chemical mutagenesis and d-cycloserine counterselection, a mutant strain unable to utilize uracil as a nitrogen source was identified. It was also unable to utilize thymine as a nitrogen source but could use either dihydrouracil or dihydrothymine as a sole source of nitrogen. Subsequently, it was determined that the mutant strain was deficient for the initial enzyme in the reductive pathway dihydropyrimidine dehydrogenase. The lack of dehydrogenase activity did not seem to have an adverse effect upon the activity of the second reductive pathway enzyme dihydropyrimidinase activity. It was shown that both dihydropyrimidine dehydrogenase and dihydropyrimidinase levels were affected by the nitrogen source present in the growth medium. Dihydropyrimidine dehydrogenase and dihydropyrimidinase activities were elevated after growth on uracil, thymine, dihydrouracil or dihydrothymine as a source of nitrogen.  相似文献   

11.
全球气候变化导致的干旱和人类活动引起的大气氮沉降升高,将会直接影响森林生态系统的结构与功能。叶片和细根作为植物最重要的资源获取功能器官,其化学计量学特征可指示其资源利用、生存适应策略。在当前气候变化背景下,了解植物的化学计量特征和适应特征将有助于预测未来森林生态系统功能的变化。通过为期1年的双因素交互实验,探讨了穿透雨减少和氮添加影响下,我国亚热带重要森林类型毛竹林的叶片及细根碳(C)、氮(N)、磷(P)元素化学计量比的响应特征,对于认识毛竹林生态系统对全球变化的适应和养分利用策略具有重要意义。研究表明:(1)穿透雨减少处理显著降低叶片N、P含量,显著增加细根N含量,对叶片C含量和细根C、P含量无显著影响;氮添加处理显著增加土壤N含量和叶片N含量,对叶片C、P含量及细根C、N、P含量无显著影响。(2)穿透雨减少、氮添加处理及两者交互作用对土壤C:N:P均无显著影响。(3)穿透雨减少处理显著增加叶片C:N、C:P和N:P;氮添加处理显著降低叶片C:N,对叶片C:P、N:P无显著影响;穿透雨减少、氮添加交互作用显著降低叶片C:N和C:P,对叶片N:P无显著影响。(4)穿透雨减少处理显著降低细根C:N,对细根C:P及N:P无显著影响;氮添加处理及穿透雨减少、氮添加交互作用对细根C:N:P无影响。综上短期处理的研究结果,穿透雨减少处理产生的水分胁迫对毛竹产生了关键限制作用,毛竹采取了降低叶片N和P含量、增加细根N含量,提高叶片的N和P利用效率、保持细根稳定的P利用效率的策略。氮添加未能缓解穿透雨减少对毛竹产生的干旱胁迫,毛竹通过改变地上部分叶片和地下部分细根之间的N素分配格局和N、P利用效率以应对水分胁迫。氮添加处理下叶片N含量显著增加,C:N显著降低,而细根C、N、P含量及化学计量比没有显著变化。由此可知毛竹地上部分叶片和地下部分细根对穿透雨减少、氮添加及两者交互作用表现出不同的响应策略。本研究可为全球变化背景下毛竹人工林可持续经营提供理论依据。  相似文献   

12.
细根的生态化学计量特征承载着植物生存环境的变化信息,从而为探索全球变化对植物内在机制的影响提供理论依据。以江西武夷山国家级自然保护区内五个不同海拔梯度(1200、1400、1600、1800、2000 m)的黄山松为对象,运用挖掘法采样后测定细根C、N、P含量及化学计量比特征,研究不同的海拔下细根对土壤养分变化的适应规律。结果表明:(1)黄山松细根C含量年平均值为(486.27±64.32)mg/g,海拔对其没有显著的影响,与土壤养分之间不存在显著的相关关系。(2)细根N含量年平均值为(9.26±2.09)mg/g,海拔对其没有显著的影响,但与土壤C含量存在显著的正相关关系。(3)细根P含量年平均值为(0.39±0.13)mg/g,与海拔梯度及土壤P含量均存在极显著正相关关系,而与土壤碳氮比呈显著负相关关系。(4)细根氮磷比为26.94±12.51,与海拔梯度、土壤P含量及土壤碳氮比均显著负相关。因此,黄山松细根吸收N是以消耗C为代价;细根P主要受土壤P供应量的限制;武夷山地区N沉降将进一步增加植物的氮磷比,加剧黄山松生长的P限制。  相似文献   

13.
The malate dehydrogenase present in the cytoplasmic fraction of plant origin and bacteroids from yellow lupine root nodules was investigated. The plant enzyme was 14 times more active in nodules than in roots and it contained 6 molecular forms in nodules compared with 3 forms detected in roots. The highest malate dehydrogenase activity in plant fraction and bacteroids was noted in 50-day old plants. Changes in the isoenzymatic patterns of malate dehydrogenase in plant fraction and bacteroids accompanying ageing of the lupine root nodules were observed. Possible physiological role of malate pathway in metabolism of lupine root nodules is discussed.  相似文献   

14.
The effect of salinity and different nitrogen sources on the level of xanthine dehydrogenase (XDH) activity in roots and leaves of pea plants was investigated. Two bands of xanthine dehydrogenase activity (XDH-R2, XDH-R3) were detected in roots after native PAGE and staining with hypoxanthine as substrate. Only one band of XDH activity (XDH-L1) was detected in leaf extracts. Within leaves of three different ages the highest XDH activity was detected in young leaves both under control as well as stress conditions. Salinity did not affect significantly the activity of XDH in pea roots, however, depressed XDH activity in leaves. A significant increase of XDH activity both in roots and leaves was observed only when ammonium was applied as the sole N source. Increased concentration of ureides in the xylem sap of pea plants was observed for both ammonium and high salt treatments, although the higher content of ureides in the xylem sap of 100 mM NaCl treated plants may be rather a result of lower rate of exudation from roots than of increased root ureide biosynthesis. Thus, the changes of root and leaf XDH activity in pea plants seem to be tightly correlated with ureide synthesis that is induced by NH 4 + , the product of N fixation, and rather than by salinity. A contribution of pea XDH in increased oxygen species or uric acid production under saline conditions seems to be less than likely.  相似文献   

15.
Live cells can reduce colorless 2,3,5-triphenyltetrazolium chloride (TTC) to a red insoluble compound, formazan. Maize (Zea mays) callus, when osmotically stressed by 0.53 mol/L mannitol, produced 7-times or more formazan than untreated control callus. This result was seen with all osmotica tested and could not be attributed to differences in TTC uptake rate or accumulation, increased respiration rate as measured by O2 uptake, or to de novo protein synthesis. Increased formazan production could be detected after 2.5 h of exposure to osmotic stress and leveled off after 48 h of exposure. The increased formazan production was only detected when callus was moved from high osmotic medium to low osmotic, TTC-containing medium. Abscisic acid increased TTC reduction only when added in combination with 0.53 mol/L mannitol. Incubation of maize seedling roots with 0.53 mol/L mannitol also increased formazan production as seen visually. Further studies are needed to determine the cause of the increased formazan production. These results show that TTC viability measurements must be carefully evaluated with appropriate controls to confirm their validity.  相似文献   

16.
Small diameter (<1.0-mm) Acer saccharum Marsh roots were separated into white, brown and woody development state classes and analyzed for total N and C concentrations in April, July and October of 1988. White roots had greater concentrations of N and C than either brown or woody roots at each sampling date, and the N concentration of brown roots was consistently greater than that of woody roots. There were no temporal changes in N concentrations in any of the roots. C was slightly elevated in mid-summer in all three classes of roots. The data suggest the possible existence of an N translocation mechanism in ageing and developing fine roots. More research should be undertaken to establish the mechanisms of N loss in developing fine roots.  相似文献   

17.
The growth and morphology as well as lipogenesis and activity of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle were studied in the fungus Mucor circinelloides var. lusitanicus INMI grown at various concentrations of urea (nitrogen source) added to the medium in different modes. It was shown that the maximum lipid content in the biomass was observed at a low (0.5 g/l) concentration of the nitrogen source, whereas the highest content of γ-linolenic acid in the lipids was detected at high (up to 4.0 g/l) concentrations of the nitrogen source. It was found that, when the feed-batch mode of nitrogen supply was used, the amount of γ-linolenic acid in total fatty acids was higher (up to 35%) than in the case of a single administration of the same amount of nitrogen source to the medium. The differences in the fatty acid composition and the unsaturation degree of the lipids from different subcellular fractions were demonstrated. The mycelium from the culture grown after a single administration of the nitrogen source was deformed to a great extent. The activities of the TCA cycle enzymes, NAD-dependent isocitrate dehydrogenase (IDH), and malate dehydrogenase (MDH) were lower than in the case of the feed-batch mode of urea addition, whereas the activity of isocitrate lyase (ICL), the key enzyme of the glyoxylate cycle, was higher. The coupling of the cell metabolism and the lipid composition of fungal cells and the process of cell differentiation in fungi depending on the conditions of nitrogen supply is discussed.  相似文献   

18.
为了解毛竹林下不同盖度芒萁种群对土壤碳含量和养分状况的影响,研究了四川长宁县芒萁(Dicranopteris dichoyoma)盖度分别为7.75%(PE)和63.25%(DD)下的毛竹(Phyllostachys edulis)林土壤团聚体稳定性和生态化学计量特征。结果表明,DD样方土壤大团聚体含量显著低于PE样方,进而导致团聚体稳定性降低。DD样方土壤总有机碳(TOC)、全氮(TN)、全磷(TP)含量显著低于PE样方,且TP降幅最大,使得土壤C:N、C:P和N:P显著增加。毛竹凋落叶和细根的TOC、TN、TP、C:N、C:P和N:P在DD和PE样方间无显著差异,但DD样方芒萁凋落叶和细根的TN和TP含量显著高于毛竹。相关分析表明PE毛竹细根的TP含量仅与大团聚体的TP含量呈显著正相关;DD毛竹和芒萁细根的TP含量与大团聚体、微团聚体和中团聚体的TP含量均呈显著正相关。毛竹林下高盖度的芒萁种群降低了土壤团聚体稳定性和土壤C、N、P含量,通过改变土壤生态化学计量特征进而增加毛竹和芒萁细根对土壤不同粒径团聚体N和P的吸收,尤其是对P的吸收。因此,在川南地区粗放经营毛竹林中应考虑调整林下...  相似文献   

19.
The effect of heavy metal deposition onto soil from a copper smelter on lipid peroxidation and antioxidant enzyme activity in the fine roots of two poplars (Populus nigra L. and Populus deltoides Bartr. ex Marsch) was analyzed. The subjects were mature trees growing in real environments. In both analyzed species, heavy metals stimulated the overproduction of free radicals in fine roots (measured as malondialdehyde level), which was directly proportional to advancing senescence. In young fine roots, heavy metals caused a decrease in guaiacol peroxidase activity and presumably disturbed the lignification process. Catalase was highly sensitive to the presence of heavy metals in the soil. In contrast, ascorbate peroxidase and glutathione reductase activities were unaffected by heavy metals. In the case of superoxide dismutase, a clear increase in enzyme activity was observed only in P. nigra under drought conditions, whereas it was inhibited in polluted stands.  相似文献   

20.
为揭示亚热带森林对未来全球变暖的生理响应特征,本研究以杉木为研究对象,利用开顶式增温方式模拟气候变暖,研究其对叶片和细根丙二醛含量、活性氧代谢、渗透调节物质含量以及抗氧化酶活性的影响。研究结果显示:(1)增温显著增加杉木叶片和细根的丙二醛含量,且叶片丙二醛含量显著高于细根,说明增温加剧了杉木叶片和细根氧化损伤,且叶片氧化损伤程度高于细根;(2)增温后,杉木叶片脯氨酸和可溶性蛋白含量降低,细根脯氨酸和可溶性蛋白含量则增加;(3)增温显著提高了杉木叶片过氧化物酶活性,对杉木细根抗氧化酶活性无显著影响;(4)增温后,杉木叶片和细根活性氧含量未发生显著变化,杉木叶片活性氧含量显著高于细根。综合分析表明,尽管增温增加了杉木叶片和细根的氧化损伤,但杉木可以通过提高抗氧化保护酶活性(叶片)和积累较多的渗透调节物质(细根)来维持体内活性氧代谢平衡。可见,杉木地上和地下部分器官间的相互合作与协调使杉木能有效地适应高温环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号