首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycoprotein IgM is the major antibody produced in the primary immune response to antigens, circulating in the serum both as a pentamer and a hexamer. Pentameric IgM has a single J chain, which is absent in the hexamer. The mu (heavy) chain of IgM has five N-linked glycosylation sites. Asn-171, Asn-332, and Asn-395 are occupied by complex glycans, whereas Asn-402 and Asn-563 are occupied by oligomannose glycans. The glycosylation of human polyclonal IgM from serum has been analyzed. IgM was found to contain 23.4% oligomannose glycans GlcNAc2Man5-9, consistent with 100% occupancy of Asn-402 and 17% occupancy of the variably occupied site at Asn-563. Mannan-binding lectin (MBL) is a member of the collectin family of proteins, which bind to oligomannose and GlcNAc-terminating structures. A commercial affinity chromatography resin containing immobilized MBL has been reported to be useful for partial purification of mouse and also human IgM. Human IgM glycoforms that bind to immobilized MBL were isolated; these accounted for only 20% of total serum IgM. Compared with total serum IgM, the MBL-binding glycoforms contained 97% more GlcNAc-terminating structures and 8% more oligomannose structures. A glycosylated model of pentameric IgM was constructed, and from this model, it became evident that IgM has two distinct faces, only one of which can bind to antigen, as the J chain projects from the non-antigen-binding face. Antigen-bound IgM does not bind to MBL, as the target glycans appear to become inaccessible once IgM has bound antigen. Antigen-bound IgM pentamers therefore do not activate complement via the lectin pathway, but MBL might have a role in the clearance of aggregated IgM.  相似文献   

2.
The beta-subunit of dog kidney (Na+ + K+)-ATPase is a sialoglycoprotein and contains three potential N-glycosylation sites. In this study, the oligosaccharide chains of purified dog kidney beta-subunit were labeled with tritium by oxidation with sodium periodate or galactose oxidase followed by NaB3H4 reduction. The beta-subunit was extensively digested by trypsin and the radioactive peptides were purified by HPLC. The enzyme, glycopeptidase A, which catalyzes the removal of N-linked oligosaccharide chains and the conversion of the glycosylated Asn residue to Asp, was used to demonstrate that a number of purified beta-subunit tryptic peptides were glycosylated. Amino-acid analysis of these beta-subunit peptides following glycopeptidase-A treatment revealed the expected Asn to Asp conversion for Asn-157, Asn-192 and Asn-264, demonstrating that all three potential N-glycosylation sites of the dog kidney beta-subunit are glycosylated. In addition, amino-acid sequence data suggest that a disulfide bond exists between Cys-158 and Cys-174.  相似文献   

3.
We recently suggested a novel site-specific N-glycosylation mechanism in Trypanosoma brucei whereby some protein N-glycosylation sites selectively receive Man9GlcNAc2 from Man9GlcNAc2-PP-Dol while others receive Man5GlcNA(2 from Man5GlcNAc2-PP-Dol. In this paper, we test this model by creating procyclic and bloodstream form null mutants of TbALG3, the gene that encodes the alpha-mannosyltransferase that converts Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol. The procyclic and bloodstream form TbALG3 null mutants grow with normal kinetics, remain infectious to mice and tsetse flies, respectively, and have normal morphology. However, both forms display aberrant N-glycosylation of their major surface glycoproteins, procylcin, and variant surface glycoprotein, respectively. Specifically, procyclin and variant surface glycoprotein N-glycosylation sites that are modified with Man9GlcNAc2 and processed no further than Man5GlcNAc2 in the wild type are glycosylated less efficiently but processed to complex structures in the mutant. These data confirm our model and refine it by demonstrating that the biantennary glycan transferred from Man5GlcNAc2-PP-Dol is the only route to complex N-glycans in T. brucei and that Man9GlcNAc2-PP-Dol is strictly a precursor for oligomannose structures. The origins of site-specific Man5GlcNAc2 or Man9GlcNAc2 transfer are discussed and an updated model of N-glycosylation in T. brucei is presented.  相似文献   

4.
MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.  相似文献   

5.
Electrophoretic analysis of endoglycosidase-treated tissue plasminogen activator obtained from human melanoma cells showed that the heterogeneity observed for the protein in these preparations is caused by an N-glycosidically linked N-acetyllactosamine type of carbohydrate chain which is present in about 50% of the molecules. An oligomannose type and an N-acetyllactosamine type of glycan is present in all molecules. Three glycopeptides were isolated and characterized by 1H-NMR, sugar determination, methylation analysis and amino acid determination. The exact attachment site for each of the three glycans could be deduced from the amino acid compositions of the glycopeptides. Asn-117 carries the oligomannose type of glycan, the structure of which was completely determined. Asn-184 is the site where the presence or absence of a biantennary N-acetyllactosamine type of glycan causes the size heterogeneity. The third N-glycosylation site, Asn-448, was found to carry a triantennary or tetraantennary N-acetyllactosamine type of carbohydrate chain.  相似文献   

6.
Glycopeptides, isolated from a trypsinolysate of functional unit (FU) RtH2-e of Rapana thomasiana hemocyanin subunit 2, were analysed by electrospray ionization mass spectrometry and MS/MS. From the molecular mass observed after deglycosylation, it was inferred that all glycopeptides shared the same peptide stretch 92-143 of FU RtH2-e with a glycosylation site at Asn-127. Besides the core structure Man(3)GlcNAc(2) for N-glycosylation, structures with a supplementary GlcNAc linked to either the Man(alpha1-3) or the Man(alpha1-6) arm and/or an additional tetrasaccharide unit connected to the other Man arm were observed, indicating the existence of microheterogeneity at the glycan level. The tetrasaccharide unit contains a central fucose moiety substituted with 3-O-methylgalactose and N-acetylgalactosamine, and linked to GlcNAc at the reducing end. This structure represents a novel N-glycan motif and is likely to be immunogenic. A second potential site for N-glycosylation in FU RtH2-e at Asn-17 was shown to be not glycosylated.  相似文献   

7.
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme hydrolyzing bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. Previously, we suggested that NAAA is glycosylated and proteolytically cleaved. Here, we investigated the mechanism and significance of the cleavage of human NAAA overexpressed in human embryonic kidney 293 cells. Western blotting with anti-NAAA antibody revealed that most of NAAA in the cell homogenate was the cleaved 30-kDa form. However, some of NAAA were released outside the cells and the extracellular enzyme was mostly the uncleaved 48-kDa form. When incubated at pH 4.5, the 48-kDa form was time-dependently converted to the 30-kDa form with concomitant increase in the N-palmitoylethanolamine-hydrolyzing activity. The purified 48-kDa form was also cleaved and activated. However, the cleavage did not proceed at pH 7.4 or in the presence of p-chloromercuribenzoic acid. The mutant C126S was resistant to the cleavage and remained inactive. These results suggested that this specific proteolysis is a self-catalyzed activation step. We next determined N-glycosylation sites of human NAAA by site-directed mutagenesis addressed to asparagine residues in six potential N-glycosylation sites. The results exhibited that Asn-37, Asn-107, Asn-309, and Asn-333 are actual N-glycosylation sites. The glycosylation appeared to play an important role in stabilizing the enzyme protein.  相似文献   

8.
GPIHBP1 is a glycosylphosphatidylinositol-anchored protein in the lymphocyte antigen 6 (Ly-6) family that recently was identified as a platform for the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1 binds both LPL and chylomicrons and is expressed on the luminal face of microvascular endothelial cells. Here, we show that mouse GPIHBP1 is N-glycosylated at Asn-76 within the Ly-6 domain. Human GPIHBP1 is also glycosylated. The N-linked glycan could be released from mouse GPIHBP1 with N-glycosidase F, endoglycosidase H, or endoglycosidase F1. The glycan was marginally sensitive to endoglycosidase F2 digestion but resistant to endoglycosidase F3 digestion, suggesting that the glycan on GPIHBP1 is of the oligomannose type. Mutating the N-glycosylation site in mouse GPIHBP1 results in an accumulation of GPIHBP1 in the endoplasmic reticulum and a markedly reduced amount of the protein on the cell surface. Consistent with this finding, cells expressing a nonglycosylated GPIHBP1 lack the ability to bind LPL or chylomicrons. Eliminating the N-glycosylation site in a truncated soluble version of GPIHBP1 causes a modest reduction in the secretion of the protein. These studies demonstrate that N-glycosylation of GPIHBP1 is important for the trafficking of GPIHBP1 to the cell surface.  相似文献   

9.
We performed a detailed investigation of N-glycan structures on BM-40 purified from different sources including human bone, human platelets, mouse Engelbreth-Holm-Swarm (EHS) tumor, and human BM-40 recombinantly expressed in 293 and osteosarcoma cells. These preparations were digested with endoglycosidases and N-glycans were further characterized by sequential exoglycosidase digestion and high-performance liquid chromatography (HPLC) analyses. Bone BM-40 carries high-mannose structures as well as biantennary complex type N-glycans, whereas the protein from platelets and 293 cells has exclusively bi- and triantennary complex type structures. BM-40 derived from the EHS tumor carries biantennary complex type and additional hybrid structures. Using the osteosarcoma-derived MHH-ES1 cell line we successfully expressed a recombinant BM-40 that bears at least in part the bone-specific high-mannose N-glycosylation in addition to complex type and hybrid structures. Using chromatography on Concanavalin-A Sepharose, we further purified a fraction enriched in high-mannose structures. This array of differentially glycosylated BM-40 proteins was assayed by surface plasmon resonance measurements to investigate the binding to collagen I. BM-40 carrying high-mannose structures binds collagen I with higher affinity, suggesting that differentially glycosylated forms may have different functional roles in vivo.  相似文献   

10.
Antibodies are highly specific recognition molecules which are increasingly being applied to target therapy in patients. One type of developmental antibody-based therapy is antibody directed enzyme prodrug therapy (ADEPT) for the treatment of cancer. In ADEPT, an antibody specific to a tumor marker protein delivers a drug-activating enzyme to the cancer. Subsequent intravenous administration of an inactive prodrug results in drug activation and cytotoxicity only within the locale of the tumor. Pilot clinical trials with chemical conjugates of the prodrug activating enzyme carboxypeptidase G2 (CPG2) chemically conjugated with an antibody to and carcinoembryonic antigen (CEA), have shown that CPG2-mediated ADEPT is effective but limited by formation of human antibodies to CPG2 (HACA). We have developed a recombinant fusion protein (termed MFE-CP) of CPG2 with an anti-CEA single chain Fv antibody fragment and we have developed methods to address the immunogenicity of this therapeutic. A HACA-reactive discontinuous epitope on MFE-CP was identified using the crystal structure of CPG2, filamentous phage technology and surface enhanced laser desorption/ionization affinity mass spectrometry. This information was used to create a functional mutant of MFE-CP with a significant reduction (range 19.2 to 62.5%, median 38.5%) in reactivity with the sera of 11 patients with post-therapy HACA. The techniques described here are valuable tools for identifying and adapting undesirable immunogenic sites on protein therapeutics.  相似文献   

11.
Chicken ovalbumin (OVA) exists as mono-N-glycosylated form with a carbohydrate chain on Asn-292 in egg white, despite the possession of two potential N-glycosylation sites. To investigate the roles of N-glycosylation of OVA, we constructed a series of N-glycosylation mutants deleted N-glycosylation site and compared the secretion level of the mutants in Pichia pastoris. N292Q and N292/311Q mutants resulted in greater lowering of the secretion level as compared with wild-type, whereas N311Q mutant was secreted in approximately equal amounts to wild-type. However, secretion of wild-type and N311Q mutant was inhibited completely by tunicamycin treatment. All the N-glycosylation mutants have been expressed in the cells, as well as wild-type. Circular dichroism and fluorescence spectra of secreted N311Q mutant were almost identical to those of wild-type, while those of N292Q and N292/311Q mutants were different from wild-type; and, N292Q and N292/311Q mutants showed considerably lower denaturation temperature than wild-type. The results indicate that N-glycosylation at Asn-292 of OVA is required for the folding and secretion.  相似文献   

12.
Optimization of humanized IgGs in glycoengineered Pichia pastoris   总被引:4,自引:0,他引:4  
As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class. Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts. Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells. Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. Glycoengineered P. pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation.  相似文献   

13.
Recombinant human glucocerebrosidase (imiglucerase, Cerezyme) is used in enzyme replacement therapy for Gaucher disease. Complex oligosaccharides present on Chinese hamster ovary cell-expressed glucocerebrosidase (GCase) are enzymatically remodeled into a mannose core, facilitating mannose receptor-mediated uptake into macrophages. Alternative expression systems could be used to produce GCase containing larger oligomannose structures, offering the possibility of an improvement in targeting to macrophages. A secondary advantage of these expression systems would be to eliminate the need for carbohydrate remodeling. Here, multiple expression systems were used to produce GCase containing primarily terminal oligomannose, from Man2 to Man9. GCase from these multiple expression systems was compared to Cerezyme with respect to affinity for mannose receptor and serum mannose-binding lectin (MBL), macrophage uptake, and intracellular half-life. In vivo studies comparing clearance and targeting of Cerezyme and the Man9 form of GCase were carried out in a Gaucher mouse model (D409V/null). Mannose receptor binding, macrophage uptake, and in vivo targeting were similar for all forms of GCase. Increased MBL binding was observed for all forms of GCase having larger mannose structures than those of Cerezyme, which could influence pharmacokinetic behavior. These studies demonstrate that although alternative cell expression systems are effective for producing oligomannose-terminated glucocerebrosidase, there is no biochemical or pharmacological advantage in producing GCase with an increased number of mannose residues. The display of alternative carbohydrate structures on GCase expressed in these systems also runs the risk of undesirable consequences, such as an increase in MBL binding or a possible increase in immunogenicity due to the presentation of non-mammalian glycans.  相似文献   

14.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

15.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

16.
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286.  相似文献   

17.
Trichoderma reesei tyrosinase TYR2 has been demonstrated to be able to oxidize various phenolic compounds and also peptide and protein bound tyrosine, and thus is of great interest for different biotechnological applications. In order to understand the reaction mechanism of the enzyme it would be essential to solve its three dimensional structure. Pichia pastoris is a suitable expression system for the production of recombinant enzymes for NMR studies and therefore we expressed TYR2 in this host. As a result of extensive optimization, the production yield of active histidine tagged tyrosinase purified from P. pastoris shake flask cultures was increased from 2.5 to 24 mg/L. Correct copper concentration in the growth medium was critical for the expression of this copper containing enzyme. Our analysis showed that TYR2 expressed in P. pastoris is post-translationally modified; the C-terminal domain of 153 amino acids of the protein is proteolytically cleaved off from the catalytic domain and the only potential N-glycosylation site is glycosylated. The activities of TYR2 expressed in P. pastoris and T. reesei on diphenolic L-dopa and monophenolic L-tyrosine were rather similar. The TYR2 expressed in P. pastoris showed the same physicochemical properties in CD and unfolding assays as the native TYR2 enzyme. Uniform isotopic (15)N-labeling of TYR2 was carried out with (15)NH(4)SO(4) in minimal medium to assess the suitability of the expression system for investigation by NMR spectroscopy.  相似文献   

18.
The two-kringle domain of tissue-type plasminogen activator (TK1-2) has been identified as a potent angiogenesis inhibitor by suppressing endothelial cell proliferation, in vivo angiogenesis, and in vivo tumor growth. Escherichia coli-derived, non-glycosylated TK1-2 more potently inhibits in vivo tumor growth, whereas Pichia expression system is more efficient for producing TK1-2 as a soluble form, albeit accompanying N-glycosylation. Therefore, in order to avoid immune reactivity and improve in vivo efficacy, we expressed the non-glycosylated form of TK1-2 in Pichia pastoris and evaluated its activity in vitro. When TK1-2 was mutated at either Asn(117) or Asn(184) by replacing with Gln, the mutated proteins produced the glycosylated form in Pichia, of which sugar moiety could be deleted by endoglycosidase H treatment. When both sites were replaced by Gln, the resulting mutant produced a non-glycosylated protein, NQ-TK1-2. Secreted NQ-TK1-2 was purified from the culture broth by sequential ion exchange chromatography using SP-sepharose, Q-spin, and UNO-S1 column. The purified NQ-TK1-2 migrated as a single protein band of approximately 20 kDa in SDS-PAGE and its mass spectrum showed one major peak of 19,950.71 Da, which is smaller than those of two glycosylated forms of wild type TK1-2. Functionally, the purified NQ-TK1-2 inhibited endothelial cell proliferation and migration stimulated by bFGF and VEGF, respectively. Therefore, the results suggest that non-glycosylated TK1-2 useful for the treatment of cancer can be efficiently produced in Pichia, with retaining its activity.  相似文献   

19.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

20.
Yeast Pichia pastoris has been widely utilized to express heterologous recombinant proteins. P. pastoris expressed recombinant porcine interleukin 3 (IL3) has been used for porcine stem cell mobilization in allo-hematopoietic cell transplantation models and pig-to-primate xeno-hematopoietic cell transplantation models in our lab for many years. Since the yeast glycosylation mechanism is not exactly the same as those of other mammalian cells, P. pastoris expressed high-mannose glycoprotein porcine IL3 has been shown to result in a decreased serum half-life. Previously this was avoided by separation of the non-glycosylated porcine IL3 from the mixture of expressed glycosylated and non-glycosylated porcine IL3. However, this process was very inefficient and lead to a poor yield following purification. To overcome this problem, we engineered a non-N-glycosylated version of porcine IL3 by replacing the four potential N-glycosylation sites with four alanines. The codon-optimized non-N-glycosylated porcine IL3 gene was synthesized and expressed in P. pastoris. The expressed non-N-glycosylated porcine IL3 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50 HQ. In vivo mobilization studies performed in our research facility demonstrated that the non-N-glycosylated porcine IL3 still keeps the original stem cell mobilization function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号