首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Malin is a software package for the analysis of eukaryotic gene structure evolution. It provides a graphical user interface for various tasks commonly used to infer the evolution of exon-intron structure in protein-coding orthologs. Implemented tasks include the identification of conserved homologous intron sites in protein alignments, as well as the estimation of ancestral intron content, lineage-specific intron losses and gains. Estimates are computed either with parsimony, or with a probabilistic model that incorporates rate variation across lineages and intron sites. Availability: Malin is available as a stand-alone Java application, as well as an application bundle for MacOS X, at the website http://www.iro.umontreal.ca/~csuros/introns/malin/. The software is distributed under a BSD-style license.  相似文献   

2.
SUMMARY: Comparative analysis of exon/intron organization of genes and their resulting protein structures is important for understanding evolutionary relationships between species, rules of protein organization and protein functionality. We present Structural Exon Database (SEDB), with a Web interface, an application that allows users to retrieve the exon/intron organization of genes and map the location of the exon boundaries and the intron phase onto a multiple structural alignment. SEDB is linked with Friend, an integrated analytical multiple sequence/structure viewer, which allows simultaneous visualization of exon boundaries on structure and sequence alignments. With SEDB researchers can study the correlations of gene structure with the properties of the encoded three-dimensional protein structures across eukaryotic organisms. AVAILABILITY: SEDB is publicly available at http://glinka.bio.neu.edu/SEDB/SEDB.html SUPPLEMENTARY INFORMATION: On the SEDB Web site.  相似文献   

3.
Exon-intron structure and evolution of the Lipocalin gene family   总被引:6,自引:0,他引:6  
The Lipocalins are an ancient protein family whose expression is currently confirmed in bacteria, protoctists, plants, arthropods, and chordates. The evolution of this protein family has been assessed previously using amino acid sequence phylogenies. In this report we use an independent set of characters derived from the gene structure (exon-intron arrangement) to infer a new lipocalin phylogeny. We also present the novel gene structure of three insect lipocalins. The position and phase of introns are well preserved among lipocalin clades when mapped onto a protein sequence alignment, suggesting the homologous nature of these introns. Because of this homology, we use the intron position and phase of 23 lipocalin genes to reconstruct a phylogeny by maximum parsimony and distance methods. These phylogenies are very similar to the phylogenies derived from protein sequence. This result is confirmed by congruence analysis, and a consensus tree shows the commonalities between the two source trees. Interestingly, the intron arrangement phylogeny shows that metazoan lipocalins have more introns than other eukaryotic lipocalins, and that intron gains have occurred in the C-termini of chordate lipocalins. We also analyze the relationship of intron arrangement and protein tertiary structure, as well as the relationship of lipocalins with members of the proposed structural superfamily of calycins. Our congruence analysis validates the gene structure data as a source of phylogenetic information and helps to further refine our hypothesis on the evolutionary history of lipocalins.  相似文献   

4.
5.
A general model for the evolution of nuclear pre-mRNA introns   总被引:5,自引:0,他引:5  
We present an overview of the evolution of eukaryotic split gene structure and pre-mRNA splicing mechanisms. We have drawn together several seemingly conflicting ideas and we show that they can all be incorporated in a single unified theory of intron evolution. The resulting model is consistent with the notion that introns, as a class, are very ancient, having originated in the "RNA world"; it also supports the concept that introns may have played a crucial role in the construction of many eukaryotic genes and it accommodates the idea that introns are related to mobile insertion elements. Our conclusion is that introns could have a profound effect on the course of eukaryotic gene evolution, but that the origin and maintenance of intron sequences depends, largely, on natural selection acting on the intron sequences themselves.  相似文献   

6.
MOTIVATION: Intron sliding is the relocation of intron-exon boundaries over short distances and is often also referred to as intron slippage or intron migration or intron drift. We have generated a database containing discordant intron positions in homologous genes (MIDB--Mismatched Intron DataBase). Discordant intron positions are those that are either closely located in homologous genes (within a window of 10 nucleotides) or an intron position that is present in one gene but not in any of its homologs. The MIDB database aims at systematically collecting information about mismatched introns in the genes from GenBank and organizing it into a form useful for understanding the genomics and dynamics of introns thereby helping understand the evolution of genes. RESULTS: Intron displacement or sliding is critically important for explaining the present distribution of introns among orthologous and paralogous genes. MIDB allows examining of intron movements and allows mapping of intron positions from homologous proteins onto a single sequence. The database is of potential use for molecular biologists in general and for researchers who are interested in gene evolution and eukaryotic gene structure. Partial analysis of this database allowed us to identify a few putative cases of intron sliding. AVAILABILITY: http://intron.bic.nus.edu.sg/midb/midb.html  相似文献   

7.
Chatterji S  Pachter L 《Genomics》2007,90(1):44-48
The exon-intron structure of eukaryotic genes allows for phenomena such as alternative splicing, nonsense-mediated decay, and regulation through untranslated regions. However, the evolution of the exon structure of genes is not well elucidated because of limited and phylogenetically sparse data sets. In this study, we use the phylogenetically diverse sequencing of the ENCODE regions to study gene structure evolution in mammalian genomes. This first phylogenetically diverse study of gene structure changes offers insights into the mode and tempo of mammalian gene structure evolution. The genes undergoing structure changes appear to be moderately to highly expressed in germline cells and show levels of selection similar to those of other ENCODE genes. Patterns of gene duplication of the affected genes are more complex than expected. The number of sampled genomes is sufficiently dense to infer that certain gene duplications happened after intron loss. Thus, although gene duplication is highly correlated with intron loss, we conclude that structural changes in genes are not necessarily due to a loss of constraint following gene duplication as previously suggested.  相似文献   

8.
内含子在生物信息学研究和基因工程中的应用   总被引:2,自引:0,他引:2  
内含子在真核生物基因组中广泛存在。已有的研究虽揭示出内含子对基因的表达有着重要的调节作用,并参与了基因的进化,但内含子的功能还远没有弄清楚,对其本身的起源与演化问题也还存在很大争论。尽管如此,目前内含子在生物信息学研究和基因工程中的应用已蓬勃展开。本文就人们目前对内含子的基因组分析、分子进化与分子系统分析研究以及内含子在转基因工程中的应用作一概述。  相似文献   

9.
Proteins, exons and molecular evolution   总被引:1,自引:0,他引:1  
S K Holland  C C Blake 《Bio Systems》1987,20(2):181-206
The discovery of the eukaryotic gene structure has prompted research into the potential relationship between protein structure and function and the corresponding exon/intron patterns. The exon shuffling hypothesis put forward by Gilbert and Blake suggests the encodement of structural and functional protein elements by exons which can recombine to create novel proteins. This provides an explanation for the relatively rapid evolution of proteins from a few primordial molecules. As the number of gene and protein structures increases, evidence of exon shuffling is becoming more apparent and examples are presented both from modern multi-domain proteins and ancient proteins. Recent work into the chemical properties and catalytic functions of RNA have led to hypotheses based upon the early existence of RNA. These theories suggest that the split gene structure originated in the primordial soup as a result of random RNA synthesis. Stable regions of RNA, or exons, were utilised as primitive enzymes. In response to selective pressures for information storage, the activity was directly transferred from the RNA enzymes or ribozymes, to proteins. These short polypeptides fused together to create larger proteins with a wide range of functions. Recent research into RNA processing and exon size, discussed in this review, provides a clearer insight into the evolutionary development of the gene and protein structure.  相似文献   

10.
Spliceosomal introns play a key role in eukaryotic genome evolution and protein diversity. A large Rab GTPase family has been identified in a unicellular eukaryote Trichomonas vaginalis. However, the characteristics of introns in Rab genes of T. vaginalis have not been investigated previously. In this study, we identified a 25-bp spliceosomal intron in the T. vaginalis Rab1a (TvRab1a) gene, the smallest intron in T. vaginalis to be characterized to date. This intron contains a canonical splice site at both 5' (GT) and 3' (AG) ends, and a putative branch-point sequence (TCTAAC) that matches the Trichomonad consensus sequence of ACTAAC except for the first nucleotide. The position and phase of the TvRab1a intron are evolutionarily conserved in Rab1 homologous genes across at least five eukaryotic supergroups, including Opisthokonta, Amoebozoa, Excavata, Chromalveolata, and Plantae. These results strongly suggest that the TvRab1a intron is likely to be an ancient spliceosomal intron, and it can therefore be used as a phylogenetic marker to evaluate particular eukaryotic groupings. Identification and characterization of the TvRabla intron may provide an insight into the evolution of the large Rab repertoire in T. vaginalis.  相似文献   

11.
Calreticulin (CRT) is a unique eukaryotic gene. The CRT gene product, calreticulin, was first identified as a calcium binding protein in 1974, but further investigations have indicated that CRT protein performs many functions in cells, including involvement in evading the host's immune system by parasites. Many studies of CRT have been published since the molecule was first discovered; however, the CRT gene exon-intron structure is only known for a limited number of ectoparasite species. In this study, we compared tick CRT genomic sequences to the corresponding cDNA from 28 species and found that 2 exons and 1 intron are present in the tick CRT gene. The intron position is conserved in 28 hard ticks, but intron size and nucleotide sequences vary. Three tick introns possess duplicated fragments and are twice as long as other introns. All tick CRT introns obey the GT-AG rule in the splice-site junctions and are phase 1 introns. By comparing tick CRT introns to those of fruit fly, mouse, and human, we conclude that tick CRT introns belong to the intron-late type. The number and size of CRT introns have increased through the evolution of eukaryotes.  相似文献   

12.
Irimia M  Roy SW 《PLoS genetics》2008,4(8):e1000148
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.  相似文献   

13.
The evolutionary significance of introns remains a mystery. The current availability of several complete eukaryotic genomes permits new studies to probe the possible function of these peculiar genomic features. Here we investigate the degree to which gene structure (intron position, phase and length) is conserved between homologous protein domains. We find that for certain extracellular-signalling and nuclear domains, gene structures are similar even when protein sequence similarity is low or not significant and sequences can only be aligned with a knowledge of protein tertiary structure. In contrast, other domains, including most intracellular signalling modules, show little gene structure conservation. Intriguingly, many domains with conserved gene structures, such as cytokines, are involved in similar biological processes, such as the immune response. This suggests that gene structure conservation may be a record of key events in evolution, such as the origin of the vertebrate immune system or the duplication of nuclear receptors in nematodes. The results suggest ways to detect new and potentially very remote homologues, and to construct phylogenies for proteins with limited sequence similarity.  相似文献   

14.
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.  相似文献   

15.
The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scenarios of gene structure evolution in paralogous gene families in animals and plants revealed numerous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral introns. This trend held even for lineages in which vertical evolution of genes involved more intron losses than gains, suggesting that gene duplication boosts intron insertion. However, dating gene duplications and the associated intron gains and losses based on the molecular clock assumption showed that very few, if any, introns were gained during the last ~100 million years of animal and plant evolution, in agreement with previous conclusions reached through analysis of orthologous gene sets. These results are generally compatible with the emerging notion of intensive insertion and loss of introns during transitional epochs in contrast to the relative quiet of the intervening evolutionary spans.  相似文献   

16.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

17.
18.
目的:研究斑马鱼Gfi-1基因在物种间进化的保守性和功能分析。方法:运用生物信息学方法分析斑马鱼Gfi-1基因结构特征和保守性等。结果:斑马鱼Gfi-1基因在蛋白水平与小鼠、人高度保守;分析斑马鱼和人的Gfi-1基因外显子、内含子和ATG起始、终止密码子也具有高度相似性;从进化树分析斑马鱼Gfi-1基因与人、小鼠、犬、猴等在进化上高度保守;分析斑马鱼、人、小鼠Gfi-1基因在染色体上的位置和相邻基因,显示出惊人的相似性。结论:斑马鱼Gfi-1基因在进化上高度保守,为脊椎动物保守基因,为其后续在造血系统和造血微环境方面的研究提供了理论支持和铺垫。  相似文献   

19.
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号