首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat liver -glucuronidase was studied by sequential lectin affinity chromatography. -Glucuronidase glycopeptides were obtained by extensive Pronase digestion followed byN-[14C]acetylation and desialylation by neuraminidase treatment. According to the distribution of the radioactivity in the various fractions obtained by chromatography on different lectins, and on the assumption that all glycopeptides were acetylated to the same specific radioactivity, a relative distribution of glycan structure types is proposed. The presence of complex biantennary and oligomannose type glycans (56.8% and 42.7%, respectively) was indicated by Concanavalin A-Sepharose chromatography.Ulex europaeus agglutinin-agarose chromatography revealed the presence of (1-3) linked fucose in some of the complex biantennary type glycans (16.6% of the total glycopeptides). Wheat germ agglutinin chromatography indicated that the minority (0.5%) were hybrid or poly (N-acetyllactosamine) type glycans. Furthermore, the absence of O-glycans, tri-, tetra- and bisected biantennary type glycans was demonstrated by analysis of Concanavalin A-Sepharose unbound fraction by chromatography on immobilized soybean agglutinin,Ricinus communis agglutinin andPhaseolus vulgaris erythroagglutinin.  相似文献   

2.
The purification of rat liver -glucuronidase from a lysosomal fraction by methods including affinity chromatography, chromatofocusing and preparative PAGE steps is described. Molecular weights of 300 000 and 150 000 were estimated by two dimensional gradient PAGE/immunoelectrophoresis of the lysosomal extract. Isoelectrofocusing in agarose gel followed by immunoelectrophoresis in the second dimension revealed the presence of at least five maxima in the range pH 4.3–7.4.The structural assessment of the carbohydrate chains of lysosomal and microsomal -glucuronidase was performed by lectin affinity immunoelectrophoresis. Reaction with Concanavalin A indicated the presence of bi-antennary complex, oligomannosidic and hybrid type structures, whereas the absence of tri- and tetra-antennary complex type structures was deduced from the lack of interaction with phytohemagglutinin-L. The reaction withLens culinaris agglutinin, Pisum sativum agglutinin andLotus tetragonolobus lectin revealed that part of the glycans contained a fucose (1-6)-linked to theN-acetylglucosamine attached to asparagine. The presence of terminal (1-4)-galactose residues was detected withRicinus communis agglutinin I.  相似文献   

3.
TheN-linked oligosaccharides of cell-CAM 105, a glycoprotein involved in the intercellular adhesion between rat hepatocytes, were studied by sequential lectin-agarose affinity chromatography of desialylated, [14C]-labelled glycopeptides. These glycopeptides were obtained by extensive pronase digestion followed byN-[14C]acetylation of the peptide moieties and desialylation by mild acid hydrolysis.Assuming that all glycopeptides were radiolabelled to the same specific radioactivity, Concanavalin A-Sepharose chromatography indicated that the majority of the glycans (84%) were of the complex-type of which approximately half were bi-antennary structures. The remainder of the glycans comprised oligomannose-type structures and/or incomplete bi-antennary structures.Pisum sativum lectin-agarose chromatography revealed that part of the bi-antennary glycans contained a fucose residue (1-6)-linked to theN-acetylglucosamine which is attached to asparagine. Furthermore, the presence of tri-, and tetra- and/or tri'-antennary complex-type glycans was demonstrated by chromatography on immobilizedPhaseolus vulgaris leukoagglutinating phytohemagglutinin andAleuria aurantia lectin (AAL). AAL-agarose chromatography furthermore indicated the presence of (1-3)-linked fucose in part of these glycopeptides, whereas no (1-6)-linked fucose could be detected in these structures.The degree of -galactosylation of the complex-type glycans was investigated by chromatography onRicinus communis agglutinin-agarose. The results indicated that only part of the bi-antennary glycans were completely -galactosylated. Similarly, at least three -galactose residues were present in only a part of the tri-, and tetra- and/or tri'-antennary glycans.Abbreviations CAM cell adhesion molecule - ConA Concanavalin A - WGA wheat germ agglutinin - PEA Pisum sativum lectin - E-PHA Phaseolus vulgaris erythroagglutinating phytochemagglutinin - L-PHA Phaseolus vulgaris leukoagglutinating phytohemagglutinin - RCA Ricinus communis agglutinin 1 - AAL Aleuria aurantia lectin - mGlc methyl--d-glucopyranoside - mMan methyl--d-mannopyranoside - CO, WO, PO, EO, LO, RO, AO, nonretained, and Cn, Wn, Pn, En, Ln, Rn, An (n=1–4) retarded or bound glycopeptide fractions on columns of immobilized ConA, WGA, PEA, E-PHA, L-PHA, RCA, and AAL, respectively The fraction names are also used sequentially, e.g. C1P1, which indicates the fraction of glycopeptides that was eluted from ConA-Sepharose on position C1 and was subsequently eluted from PEA-agarose on position P1.  相似文献   

4.
α-Galactosidase has been examined in various murine tissues using the substrate 4-methylumbelliferyl-α-galactoside. Mouse liver appears to contain a single major form of the enzyme, as judged by chromatography and electrophoresis. The enzyme was purified 467-fold with a yield of about 40% by a method involving chromatography on Concanavalin A-Sepharose. It has maximal activity at pH 4.2, a Km value of 1.4 mM, an energy of activation of 16 400 cal/mol, and a molecular weight of 150 000 at pH 5.2. It is inhibited at high concentrations of myoinositol and appears to contain N-acetylneuraminic acid. In these characteristics it resembles human α-galactosidase A.The enzyme from various tissues differs in electrophoretic mobility. After treatment with neuraminidase, however, the enzyme from all tissues comigrates as a single band of activity. By this criterion the α-galactosidase of liver is most heavily sialylated and that from kidney the least. As estimated by gel filtration, the enzyme from liver and kidney exists as species of molecular weight 320 000, 150 000 and 70 000, depending upon pH and ionic strength. This appears to be the result of aggregation of the enzyme, since the forms are interconvertible and under some conditions a single molecular weight species is observed. The liver enzyme is primarily lysosomal, while the kidney enzyme is distributed approximately equally between lysosomal and microsomal fractions.  相似文献   

5.
The binding profile of Triticum vulgaris (WGA, wheat germ) agglutinin to 23 O-glycans (GalNAcα1→Ser/Thr containing glycoproteins, GPs) was quantitated by the precipitin assay and its specific interactions with O-glycans were confirmed by the precipitin inhibition assay. Of the 28 glycoforms tested, six complex O-glycans (hog gastric mucins, one human blood group A active and two precursor cyst GPs) reacted strongly with WGA and completely precipitated the lectin added. All of the other human blood group A active O-glycans and human blood group precursor GPs also reacted well with the lectin and precipitated over two-thirds of the agglutinin used. They reacted 4–50 times stronger than N-glycans (asialo-fetuin and asialo-human α1 acid GP). The binding of WGA to O-glycans was inhibited by either p-NO2-phenyl α,βGlcNAc or GalNAc. From these results, it is highly possible that cluster (multivalent) effects through the high density of weak inhibitory determinants on glycans, such as GalNAcα1→Ser/Thr (Tn), GalNAc at the non-reducing terminal, GlcNAcβ1→ at the non-reducing end and/or as an internal residue, play important roles in precipitation, while the GlcNAcβ1→4GlcNAc disaccharide may play a minor role in the precipitation of mammalian glycan-WGA complexes.  相似文献   

6.
Male BALB/C mice were injected intraperitoneally with 2.5 i.u. of gonadotrophin. After the injection, increase of β-glucuronidase activity was first observed in the microsomal fraction. By 36h 45–50% of the total homogenate activity was found in the microsomal fraction compared with 20–25% in the control microsomal fraction. From 36 to 80h not only microsomal β-glucuronidase but also lysosomal β-glucuronidase increased progressively. After 69h stimulation with 2.5 i.u. of gonadotrophin, d-[1-14C]glucosamine or l-[U-14C]leucine was injected intraperitoneally. After a further 3h the kidneys were homogenized and five particulate fractions were prepared by differential centrifugation. The β-glucuronidase in the microsomal and lysosomal fractions was released respectively by ultrasonication and by freezing and thawing treatment. The enzyme was purified by organic-solvent precipitation and by sucrose-density-gradient centrifugation. The results demonstrated the incorporation of these two labels into the mouse renal β-glucuronidase. The microsomal β-glucuronidase was much more radioactive than the lysosomal enzyme and approx. 80% of the newly synthesized enzyme appeared in microsomes and approx. 20% of that was found in lysosomes at this period. These results suggest that the mouse renal β-glucuronidase is a glycoprotein and that the newly synthesized enzyme is transported from endoplasmic reticulum to lysosomes.  相似文献   

7.
Neuraminidase treatment of blood type A and B human erythrocytes, which is required for the agglutination of these cells by peanut (Arachis hypogaea) lectin, increased the number of receptor sites for the lectin from about 5 × 104 to 1.8 × 106 sites/ cell for both blood types. The same treatment also increased the agglutinability of type A cells by the blood group A-specific Dolichos biflorus lectin, but the number of receptor sites for this lectin (~6 × 105 sites/cell) did not change. D. biflorus lectin binding and agglutination of blood type B cells were negligible both before and after neuraminidase treatment. To isolate the peanut agglutinin receptor from the membrane of these cells, washed type A erythrocytes were incubated with neuraminidase and galactose oxidase and then treated with NaB3H4, thus labeling the galactose residues on the membrane. For measuring peanut agglutinin receptor activity, a radioaffinity assay was developed based on the displacement of [14C]asialofetuin from peanut agglutinin by receptor and precipitation of the complex in the presence of polyethyleneglycol. Membranes were isolated by hypotonic lysis and were solubilized in 0.5% Empigen BB, a zwitterionic detergent, which was found to be superior to Triton X-100 for this purpose. The cell extract, after centrifugation, was subjected to affinity chromatography on peanut agglutinin-polyacrylhydrazido-Sepharose. Elution with lactose afforded a peak of radioactivity (32% yield) containing 70% of the applied receptor activity. The eluting sugar and the receptor were separated by chromatography on Bio-Gel P-2 with subsequent dialysis against 80% acetone to remove the detergent. The bulk of the isolated receptor radioactivity (91%) precipitated with peanut agglutinin. The amino acid composition, the glucosamine and galactosamine content and the electrophoretic mobility, on polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the peanut receptor were similar to those of asialoglycophorin. In addition, the peanut receptor coprecipitated with asialoglycophorin and with isolated erythrocyte T antigen on Ouchterlony double-diffusion plates against peanut agglutinin and the Ricinus communis lectin, but not with D. biflorus lectin, suggesting that the receptor for the latter lectin is distinct from the peanut agglutinin receptor.  相似文献   

8.
Dendritic cell inhibitory receptor 2 (DCIR2) is a C-type lectin expressed on classical dendritic cells. We recently identified the unique ligand specificity of mouse DCIR2 (mDCIR2) toward biantennary complex-type glycans containing bisecting N-acetylglucosamine (GlcNAc). Here, we report the crystal structures of the mDCIR2 carbohydrate recognition domain in unliganded form as well as in complex with an agalactosylated complex-type N-glycan unit carrying a bisecting GlcNAc residue. Bisecting GlcNAc and the α1-3 branch of the biantennary oligosaccharide asymmetrically interact with canonical and non-canonical mDCIR2 residues. Ligand-protein interactions occur directly through mDCIR2-characteristic amino acid residues as well as via a calcium ion and water molecule. Our structural and biochemical data elucidate for the first time the unique binding mode of mDCIR2 for bisecting GlcNAc-containing glycans, a mode that contrasts sharply with that of other immune C-type lectin receptors such as DC-SIGN.  相似文献   

9.
Important differences in asparagine-linked glycopeptides were observed in vitro cultured fibroblasts derived from chick embryo at different stages of development. Cells from 8-day and 16-day embryos were labeled metabolically with [3H]mannose. Cell surface glycopeptides obtained after mild trypsin treatment were extensively digested with pronase and then chromatographed on concanavalin-A-Sepharose and other immobilized lectins. The most important changes concerned the complex type chains. The ratio between triantennary plus tetraantennary and biantennary chains increased about 2.5-fold from the 8th to the 16th day of development. In the same way, complex chains with bisecting N-acetylglucosamine increased from 8-day to 16-day cells as shown by Phaseolus-vulgaris-erythroagglutinin--agarose chromatography. In 16-day cells, the majority of triantennary chains (60%) with alpha-linked mannose substituted at C2 and C6 positions and biantennary chains (50%) were shown to contain fucosyl (alpha 1----6)N-acetylglucosaminyl structure in the core region by their ability to bind to a lentil lectin affinity column. Similarly, in 8-day cells, triantennary chains (50%) were more fucosylated than biantennary chains (35%). Thus, complex structures exhibited an increased fucosylation of their invariable core from the 8th to the 16th day of development, except for fucosylated triantennary chains which were retained on Phaseolus vulgaris Leucoagglutin and on lentil lectin. These latter structures were present at the surface of 8-day cells and absent at the surface of 16-day cells. After chromatography on Bio-Gel P6 and treatment with endo-beta-N-acetylglucosaminidase H, the [3H]-mannose-labeled glycopeptides were separated by high resolution chromatography into glycopeptides with complex chains and glycopeptides with high-mannose chains. Analysis of the high-mannose oligosaccharides released after endo-beta-N-acetylglucosaminidase H treatment by chromatography on Bio-Gel P4 indicated that the same type of high-mannose chains were present at the surface of 8-day and 16-day cells. Quantification of mannose, galactose and sialic acid residues using gas liquid chromatography was consistent with a decrease of the relative amount of oligomannose chains and an increase of the relative amount of complex type chains in 16-day cells compared to 8-day cells. Thus N-linked oligosaccharides derived from cell surface glycoproteins undergo changes during embryo development resulting in greater complexity of carbohydrate chains.  相似文献   

10.
Summary Twelve specimens of resin-embedded human trabecular meshwork were probed with a panel of 21 biotinylated lectins, using an avidin-biotin peroxidase revealing system, in order to determine the normal pattern of saccharide expression in this tissue. High-mannose, intermediate and hybrid N-linked glycans, and complex N-linked bisected and non-bisected bi/tri-antennate glycans, as shown by the binding ofCanavalia ensiformis (ConA),Pisum sativum (PSA),Lens culinaris (LCA) agglutinins andPhaseolus vulgaris erythroagglutinin (ePHA), were strongly expressed by the canal of Schlemm endothelium and juxtacanalicular tissue, but less so by the corneoscleral meshwork. Highly branched complex glycans were not found, as there was no binding byPhaseolus vulgaris leukoagglutinin (1PHA). Sialyl residues, especially thoseα2,6-linked as demonstrated by strongSambucus nigra (SNA) lectin staining, were also abundant in this area.N-acetyllactosamine sequences and some O-linked glycans were present in the trabecular meshwork, as shown bySolanum tuberosum (STA),Datura stramonium (DSA), andJacalin (Jac) lectin binding, while fucose residues were not detected byTetragonolobus purpureas (LTA) orUlex europaeus-1 (UEA-1) agglutinins. These results indicate similarities with renal glomerular and vascular endothelium, although the lack of binding with UEA-1 agglutinin suggests differences which may relate to the specialized function of the trabecular meshwork. This study provides a baseline for comparative analysis of the glycans of human trabecular meshwork in pathological conditions such as primary open-angle glaucoma.  相似文献   

11.
Human IGFBP-3 contains three potential N-linked glycosylation sites. Published data concerning the type and saccharide composition of the N-glycans is scarce. The aim of this study was to characterise N-glycans covalently attached to IGFBP-3 from sera of healthy adults (men and women). In order to do that a panel of eight lectins covering broad saccharide specificity was used: agarose-immobilised SNA (Sambucus nigra agglutinin), Con A (lectin from Canavalia ensiformis), RCA I (Ricinus communis agglutinin I), PHA-E (Phaseolus vulgaris erythroagglutinin), PHA-L (P. vulgaris leukoagglutinin), succinylated WGA (wheat germ agglutinin), ECL (Erythrina cristagalli lectin) and UEA (Ulex europaeus agglutinin). IGFBP-3 interacted with SNA, Con A, RCA I, PHA-E and, to a much lesser extent, with PHA-L. These results indicate that human IGFBP-3 bears mostly biantennary complex type N-glycans with a very high content of α-2,6-linked Sia at their termini. Hybrid type and high-mannose type N-glycans are present, as well as a bisecting GlcNAc residue, which may be core fucosylated. N-glycosylation of IGFBP-3 follows the N-glycosylation pattern of major serum proteins. This study represents a ground for the future research of glycosylation pattern of IGFBP-3 from the circulation of men and women diagnosed with different illnesses.  相似文献   

12.
The oligosaccharides of microsomal beta-glucuronidase were analysed by gel permeation and weak anion exchange chromatography following hydrazine release. N-linked glycans, constituted 80% of the total glycan pool and were mainly of the tri- and biantennary complex type with or without core and arm fucose. The major oligosaccharide, that comprised 30.6% of all the species analysed, was structurally identified by reagent array analysis method and found to be a triantennary complex structure, Galbeta1,4GlcNAcbeta1,2Manalpha1,6(3)(Galbeta1,4GlcNAcbeta1,4(Galbeta1,4GlcNAcbeta1,2) Manalpha1,3(6))Manbeta1,4GlcNAcbeta1,4 GlcNAc. O-Linked glycans comprised 20% of the total glycan pool, the major species being Galbeta1,3GalNAc. All of the N- and O-linked glycans were charged. Most of the negative charge was due to sialic acid (85.0%) with the remainder being phosphate present as phosphomonoesters (7.3%) and phosphodiesters (5%). This is the first report of O-linked carbohydrate chains in microsomal beta-glucuronidase. The presence of O-linked glycans and branched N-linked glycans in a microsomal enzyme, in relation to the current view of glycosyltransferase compartmentalization in the Golgi is discussed.  相似文献   

13.
The N-linked oligosaccharides synthesised by the murine plasmacytoma cell line NS-1 have been analysed by lectin affinity chromatography on columns of immobilised concanavalin A (Con A), Lens culinaris (lentil), Ricinus communis agglutinin (RCA) and leuko-phytohemagglutinin (L-PHA). The majority of complex N-glycans in this transformed cell line were branched structures with only a low level of biantennary complex chains detected. The analysis showed the major complex N-glycan fraction consisted of a minimum sialylated triantennary structure. [3H]Mannose-labelled transferrin receptor was isolated from NS-1 cells by immunoprecipitation followed by electroelution from SDS polyacrylamide gels. The isolated receptor was digested with Pronase and the 3H-labelled glycopeptides analysed by lectin affinity chromatography. Analysis by Con A-Sepharose indicated that approx. 50% of the labelled glycopeptides were branched complex N-glycans (unbound fraction) while the remainder were oligomannose structures (strongly bound). The presence of tri and/or tetraantennary structures in the Con A unbound fraction was further suggested by the interaction of 61% of the fraction with L-PHA. The lectin profiles obtained for the complex N-glycans of the transferrin receptor glycopeptides were similar to those for the total cellular glycopeptides of NS-1 cells. Reverse-phase HPLC analysis of tryptic glycopeptides of the isolated [3H]mannose-labelled transferrin receptor gave three 3H-labelled peaks, indicating that all three potential N-glycosylation sites on the receptor are utilised. The Con A-Sepharose profiles of the three fractions indicated the presence of branched complex N-glycans and high mannose chains at each site. The profiles of two of the tryptic glycopeptide fractions were very similar, while the third had a higher content of oligomannose oligosaccharides.  相似文献   

14.
Cultured fibroblasts from patients with the lysosomal storage disease, mucolipidosis II, produce complex glycosylated lysosomal enzymes which are preferentially excreted presumably due to the absence of specific phosphomannosyl recognition residues needed for intracellular retention. Complex glycosylated hydrolases are also produced by fibroblasts from patients with mucolipidosis I but an abnormal excretion is not apparent in this disorder. Intra- and extracellular distribution, lectin binding, and specific endocytosis were criteria used to compare the properties of intra- and extracellular β-hexosaminidase derived from mucolipidosis I and normal fibroblast cultures. Mucolipidosis I fibroblasts did not hyperexcrete β-hexosaminidase when maintained in serum-free medium. Using the specifity of ricin binding to terminal galactosyl residues, the most galactosylated forms of the enzyme derived from mucolipidosis I cell extracts and culture fluids were found in the mucolipidosis I cell extracts (50% of total enzyme). Mucolipidosis I-excreted β-hexosaminidase which was eluted from ricin-120-Sepharose, was a high-uptake form in endocytosis experiments while unbound enzyme was a low-uptake form. These data suggest that β-hexosaminidase molecules contained phosphomanosyl residues necessary for receptor-mediated endocytosis as well as galactosyl residues on the same molecule. The co-existence of complex chains with high-mannose chains did not interfere with the phosphomannose-mediated endocytosis of β-hexosaminidase nor with the retention of endogenous enzyme. We can speculate that since complex oligosaccharide chains in the mucolipidosis I cellular enzyme persist due to a sialidase deficiency, more extensive sialylation of cellular enzyme in normal fibroblasts probably occurs at some point during post-translational processing. However, the presence of sialidase in normal cells initiates complex chain trimming in the lysosomes resulting in a less glycosylated end product.  相似文献   

15.
The gene PHO5 coding for one of the repressible acid phosphatases of the yeastSaccharomyces cerevisiae has been expressed at high efficiency in the baby hamster kidney (BHK) cell line. The expression vector was constructed from PHO5 driven by the human -actin promoter and was transfected into BHK cells by the calcium phosphate method. The recombinant APase (r-APase) which was secreted in active form from the cells was estimated by SDS/polyacrylamide gel electrophoresis to have molecular massM r=62000, indicating substitution of the polypeptide moiety by 2–3 asparagine-linked glycans. Analysis by sequential lectin affinity chromatography of glycopeptides obtained from r-APase with Pronase showed that the glycans are predominantly of the 2.2.4 triantennary and tetraantennary complex-type. These data suggest that the extensive glycosylation of yeast APase, which contains eight polymannose substituents, is not essential for secretion and expression of enzymatic activity of the transfected gene product.Abbreviations APase acid phosphatase - PBS phosphate buffered saline - TBS Tris buffered saline - con A concanavalin A - TCA Tetracarpidium conophorum agglutinin  相似文献   

16.
The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies.  相似文献   

17.
We report here the isolation and characterization of a peptide-N 4-(acetyl-β-glucosaminyl) asparagine amidase (peptide: N-glycanase) from soybean (Glycine max) seeds. The enzyme was purified to homogeneity with 6.5% yield from defatted soybean meal extract by ion-exchange chromatography, gel filtration, hydroxyapatite chromatography, and hydrophobic chromatography. The purified enzyme, designated PNGase-GM, had the apparent molecular mass of 93 kDa by SDS-PAGE and 90 kDa by gel filtration, indicating this PNGase is a monomeric protein. The enzyme showed maximal activity at pH 4.5-5.0. PNGase-GM was capable of hydrolyzing the β-aspartylglycosylamine linkage (GlcNAcβ1→Asn) of various glycopeptide substrates bearing high-mannose type, hybrid type, and xylose/fucose-containing plant complex type N-glycan units, while this amidase was far less active on the glycopeptides bearing sialylated animal complex-type glycans.  相似文献   

18.
A new procedure for isolating a L-fucose-specific lectin from the mushroom Aleuria aurantia is described. The fine specificity of the purified lectin was determined by inhibition of agglutination of human red blood cells by various glycopeptides and oligosaccharides, and by studying the affinity of the immobilized lectin towards glycopeptides and oligosaccharides. Results of inhibition of hemagglutination showed that the lectin presents the highest affinity towards alpha-(1----6)-linked L-fucosyl groups. Immobilized Aleuria aurantia agglutinin interacts strongly with all N-glycosylpeptides or related glycans possessing an alpha-L-fucopyranosyl group linked to O-6 of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl residue involved in the glycosylamine linkage. In addition, presence of alpha-(1----3)-linked L-fucosyl groups greatly enhances the affinity of the lectin for the alpha-(1----6)-L-fucosylated glycans. The immobilized Aleuria lectin is a powerful tool for the resolution of the microheterogeneity of L-fucosylated glycopeptides and glycans of the N-acetyl-lactosamine type.  相似文献   

19.
Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M) was proved to act on complex type biantennary oligosaccharides of glycoproteins by using dansylated asparagine-linked and pyridylaminated oligosaccharides, as the substrate. The enzyme could act on both asialo- and sialo-biantennary oligosaccharides. This is the only endo-β-N-acetylglucosaminidase known to act on sialo glycans, though their activity for them was weak. The enzyme could liberate complex type biantennary oligosaccharides from native human asialotransferrin, which was ascertained by a combination of the pyridylaminated method and HPLC. The enzyme had substrate specificity for high-mannose type oligosaccharides different from those of the endo-β-N-acetylglucosaminidases of other microorganisms: ovalbumin glycopeptide-IV was a better substrate for Endo-M than glycopeptide-V. The enzyme could act on complex type triantennary oligosaccharides of dansylated glycopeptide prepared from calf fetuin. The enzyme had various novel specificities in regard to activities on complex type and high-mannose type oligosaccharides in glycoproteins.  相似文献   

20.
The binding of five radiolabelled lectins (Vicia graminea, peanut,Phaseolus vulgaris isolectins E-PHA and L-PHA,Evonymus europaeus) to untreated and desialylated K562 cells and human erythrocytes was compared. The number of glycophorin A receptors recognized on the K562 cells by anti-blood group NV. graminea lectin was comparable to that found on the MN or NN erythrocyte surface. However, K562 cells had a severalfold higher number of oligosaccharide chains (presumablyO-glycosidic) which after desialylation became high-affinity receptors for peanut agglutinin, and of complex typeN-glycosidic chains available for the reaction with E-PHA and also with L-PHA (the latter lectin was not bound to erythrocytes). Moreover, K562 cells not treated with neuraminidase had a significant amount of extremely low affinity receptors for peanut agglutinin, whereas binding of this lectin to untreated erythrocytes was undetectable. On the other hand, the untreated K562 cells did not bind anti-blood group B and HE. europaeus lectin, but a small amount of binding by the desialylated cells was observed. Some other differences observed in the mode of lectin binding to K562 cells and erythrocytes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号