首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine root is of importance in biogeochemical cycles especially in terrestrial ecosystems. The lack of understanding of the factors controlling root lifespan has made accurate prediction of carbon flow and nutrient cycling difficult. A controlled warming experiment was performed in an alpine meadow on the northern Tibetan Plateau (near Nagchu Town). We used a minirhizotron technique to measure root dynamics in situ during the growing season of 2013 and 2014 and survival analyses to assess root lifespan and the effects of root diameter, branch order, birth season, root depth and warming on root lifespan. Root diameter, branch order and root depth were all positively correlated with root lifespan. With an increase in diameter of 0.1 mm, mortality hazard ratio of roots declined by 19.3 %. An increase in one level in branch order was associated with a decrease of 43.8 % in root death ratio. Compared with roots born in May–mid-July, the mortality hazard ratio of roots born in late July–August and September–October reduced by 26.8 and 56.5 %, respectively. In warming treatments, roots tended to be thinner, less branched and deeper, and there was a higher proportion of roots born in spring compared to ambient conditions. Warming shortened the median root lifespan 44 days. However, in single warming condition, root diameter had no significant influence on root lifespan. Root diameter, branch order, root depth and season of birth were all factors affecting root lifespan in the alpine meadow; however, root branch order was dominant.  相似文献   

2.
樟子松人工林细根寿命估计及影响因子研究   总被引:2,自引:1,他引:1       下载免费PDF全文
细根寿命的估计是了解细根生产和死亡的关键, 对了解陆地生态系统碳分配格局和养分循环具有重要意义。该研究采用微根管(minirhizotron)技术, 以23年生樟子松(Pinus sylvestris var. mongolica)人工林为研究对象, 对细根生长和死亡过程进行了连续两年的观测。细根寿命的估计采用Kaplan-Meier方法, 计算细根的平均寿命(mean longevity)、中值寿命(median longevity)和累积存活率(cumulative survival rate), 用对数秩检验(log-rank test)比较单一因素, 包括细根直径、根序、出生季节和土层以及菌根侵染对细根寿命的影响。采用Cox比例风险回归分析方法, 同时分析上述因素对细根存活的影响程度。结果表明, 樟子松细根的生产和死亡具有明显的季节性, 春末和夏季(6月和7月)为生产高峰; 而死亡高峰出现在夏末至秋末, 以及冬季。樟子松细根的平均和中值寿命分别为(322 ± 10)天和(310 ± 15)天, 对数秩检验表明, 仅考虑单一因子时, 细根直径、根序、出生季节和土层以及菌根侵染均对细根寿命有显著影响。Cox回归分析表明, 菌根侵染、细根直径和土层是影响樟子松细根寿命的重要因子。细根直径每增加1 mm, 细根死亡危险率就降低99%, 即相当于寿命延长99%; 细根出生土层每增加1 cm, 其寿命延长5%; 而菌根侵染后, 会导致细根死亡危险率增加175%; 但根序和出生季节的影响不显著。这些发现证实: 林木细根寿命受到内在与外在因素的共同控制, 而多变量回归分析的方法有助于我们全面揭示细根寿命变异的潜在机制。  相似文献   

3.
 细根在发挥植物功能以及生态系统碳和养分循环过程中起着重要作用。为了解我国不同森林生态系统细根直径变化规律, 提供建立根系模型的基础, 该文研究了我国温带、亚热带和热带45个常见树种1~5级根直径的变异以及直径与根序的关系。结果表明: 1)在所有树种中, 1级根直径最细, 5级根直径最粗, 直径随根序的增加而增加。此外, 同一根序的直径在不同树种间变异较大, 在不同生态系统中, 各树种1级根的总体平均直径呈现温带<亚热带<热带的格局。2)不同生态系统树种同一根序平均直径变异程度不同, 各个根序都是温带最小, 亚热带次之, 热带最大。3)细根内部各个根序的平均直径变异的52%由根序解释, 33%由树种解释, 生态系统类型和生活型分别解释7%和2%。不同系统不同树种直径的变异说明无法用统一的直径级来研究根的功能, 也无法用统一的根序和直径间的关系来建立根系形态模型。今后的研究需要进一步认识根序和直径在不同树种中如何与根的功能相联系。  相似文献   

4.
We have limited understanding of architecture and morphology of fine root systems in large woody trees. This study investigated architecture, morphology, and biomass of different fine root branch orders of two temperate tree species from Northeastern China—Larix gmelinii Rupr and Fraxinus mandshurica Rupr —by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e., 0–10 and.10–20 cm). Branching ratio (R b) differed with the level of branching: R b values from the fifth to the second order of branching were approximately three in both species, but markedly higher for the first two orders of branching, reaching a value of 10.4 for L. gmelinii and 18.6 for F. mandshurica. Fine root diameter, length, SRL and root length density not only had systematic changes with root order, but also varied significantly with season and soil depth. Total biomass per order did not change systematically with branch order. Compared to the second, third and/or fourth order, the first order roots exhibited higher biomass throughout the growing season and soil depths, a pattern related to consistently higher R b values for the first two orders of branching than the other levels of branching. Moreover, the differences in architecture and morphology across order, season, and soil depth between the two species were consistent with the morphological disparity between gymnosperms and angiosperms reported previously. The results of this study suggest that root architecture and morphology, especially those of the first order roots, should be important for understanding the complexity and multi-functionality of tree fine roots with respect to root nutrient and water uptake, and fine root dynamics in forest ecosystems.  相似文献   

5.
Guo D  Xia M  Wei X  Chang W  Liu Y  Wang Z 《The New phytologist》2008,180(3):673-683
* Different portions of tree root systems play distinct functional roles, yet precisely how to distinguish roots of different functions within the branching fine-root system is unclear. * Here, anatomy and mycorrhizal colonization was examined by branch order in 23 Chinese temperate tree species of both angiosperms and gymnosperms forming ectomycorrhizal and arbuscular-mycorrhizal associations. * Different branch orders showed marked differences in anatomy. First-order roots exhibited primary development with an intact cortex, a high mycorrhizal colonization rate and a low stele proportion, thus serving absorptive functions. Second and third orders had both primary and secondary development. Fourth and higher orders showed mostly secondary development with no cortex or mycorrhizal colonization, and thus have limited role in absorption. Based on anatomical traits, it was estimated that c. 75% of the fine-root length was absorptive, and 68% was mycorrhizal, averaged across species. * These results showed that: order predicted differences in root anatomy in a relatively consistent manner across species; anatomical traits associated with absorption and mycorrhizal colonization occurred mainly in the first three orders; the single diameter class approach may have overestimated absorptive root length by 25% in temperate forests.  相似文献   

6.
采用微根管技术对福建建瓯万木林自然保护区细柄阿丁枫(ALG)和米槠(CAC)细根进行了连续2 a的观测。估计细根寿命采用Kaplan-Meier方法,用对数秩检验(log-rank test)比较单一因素(细根直径、序级、出生年份、出生季节、土层以及邻近细根数量)对细根寿命的影响。同时采用Cox比例风险回归分析方法,分析上述因素对细根存活的影响程度。结果表明:细柄阿丁枫细根平均寿命和中值寿命分别为(286±8)d和(184±9)d,而米槠的则分别为(261±10)d和(212±8)d。仅考虑单一因素时,出生季节、径级、序级以及邻近细根数量对细柄阿丁枫和米槠细根寿命皆有极显著影响(P<0.01);出生年份对米槠细根寿命有极显著影响(P<0.01),但对细柄阿丁枫细根寿命的影响无统计学意义(P>0.05);土层深度对细柄阿丁枫细根寿命有极显著影响(P<0.01),而对米槠细根寿命的影响无统计学意义(P>0.05)。Cox比例风险回归分析则表明出生年份对二者细根寿命的影响皆无统计学意义(P>0.05),影响因素按照影响程度大小排列均依次是序级、出生季节、细根直径、邻近细根数量,而土层对细柄阿丁枫细根寿命的影响最弱,对米槠细根寿命的影响无统计学意义(P>0.05)。  相似文献   

7.
Differences in spatial rooting patterns among coexisting species have been recognized as an important mechanism for generating biodiversity effects on ecosystem functioning. However, it is not yet clear whether complementarity in root space exploration is a universal characteristic of multi-species woody communities. In a temperate broad-leaved forest with a mosaic of species-poor and species-rich stands, we tested two hypotheses related to putative below-ground ‘overyielding’ in more diverse forests, (1) that species mixture results in a partial spatial segregation of the fine root systems of different species, and (2) that stand fine root biomass increases with tree species diversity. We investigated 12 stands either with one, three, or five dominant tree species (4 replicate stands each) under similar soil and climate conditions for stand fine root biomass and spatial root segregation in vertical and horizontal direction in the soil. Fine roots of different tree species were identified using a morphological key based on differences in colour, periderm surface structure, and branching patterns. In species-poor and species-rich stands, and in all tree species present, fine root density (biomass per soil volume) decreased exponentially with soil depth at very similar rates. Stand fine root biomass in the densely rooted upper soil (0–40 cm depth) was not significantly different between stands with 1, 3 or 5 dominant tree species. We conclude that ‘below-ground overyielding’ in terms of higher fine root biomasses in species-rich stands as compared to monospecific ones does not occur in these broad-leaved forests which most likely results from a missing complementarity in vertical rooting patterns of the present tree species.  相似文献   

8.
地下水是干旱荒漠区潜水灌丛植物的重要水分来源,为认识地下水埋深对潜水植物功能性状的影响,利用蒸渗仪群配备的全自动补水仪设置两组地下水埋深(2和3.5 m),测定幼龄梭梭生长季同化枝水力性状、气体交换特征和根系形态参数.结果表明:与地下水埋深2 m相比,地下水埋深3.5 m处理幼龄梭梭黎明前同化枝水势、饱和膨压渗透势和根...  相似文献   

9.
闽楠人工林细根寿命及其影响因素   总被引:2,自引:0,他引:2  
采用微根管技术对闽楠(Phoebe bournei (Hemsl.) Yang)人工林细根生长动态进行了连续2a的观测,通过Kaplan-Meier方法估计细根寿命,使用对数秩检验(Log-rank test)比较单一因素(细根直径、序级、出生季节和土层)对细根寿命的影响;并分析细根化学性质对细根寿命的影响.结果表明:出生季节极显著影响闽楠细根寿命(P<0.01),细根主要在春季出生(82.36%),夏季出生的细根平均寿命和中值寿命皆最长,分别为(218±23)d和(175±65)d;土层对闽楠细根寿命的影响不显著(P>0.05),下层(20-40 cm)细根平均寿命为(126±4)d高于表层(0-20cm)的(116±5)d;细根平均寿命随直径增大而极显著增大(P<0.01),0-0.3 mm的细根平均寿命为(109±4)d,0.3-0.6 mm的为(123±5)d,0.6-1 mm的为(139±11)d,1-2 mm的为(185±25)d.随着径级增大,闽楠细根碳含量极显著增大(P<0.01),氮含量极显著减小(P<0.01),碳氮比极显著增大(P<0.01),磷含量极显著减小(P<0.01).细根平均寿命随序级增大亦显著增大(P<0.05),其中一级根平均寿命和中值寿命分别为(120±4)d和(89±1)d,高级根的则为(137±7)d和(123±1)d.以上结果表明闽楠细根寿命受到细根形态结构(直径和序级)、出生季节以及细根化学性质的影响.  相似文献   

10.
We used a minirhizotron system to investigate the influence of three major factors—root morphology, root depth, and season of root emergence—on root survivorship and longevity in a Kobresia humilis meadow on the Tibetan Plateau during the growing season of 2009. Root longevity was assessed by survival analysis, Kaplan–Meier analysis, and Cox proportional hazards regression. Root longevity was correlated positively with root diameter. A 17.5 % decrease in the risk of mortality was associated with a 0.1-mm increase in diameter. Roots distributed in the top 10 cm of the soil had significantly shorter longevities than roots at greater depths, with a 48 % decrease of mortality risk for each 10-cm increase in soil depth from the surface to 40 cm. Of all the factors examined, the season of root emergence had the strongest effect on root lifespan. Roots that emerged in May and June had shorter longevity than roots that emerged later in the year, and roots that emerged in September and October were more likely to survive over winter. Our findings indicated that life-history traits of roots in K. humilis meadows are highly heterogeneous, and this heterogeneity should be considered when modeling the contribution of roots to carbon and nitrogen fluxes in this type of meadow ecosystem. Moreover, temporal, spatial, and compositional variations in root longevity must be considered.  相似文献   

11.
帽儿山温带落叶阔叶林细根生物量、生产力和周转率   总被引:1,自引:0,他引:1  
细根在森林生态系统能量流动与物质循环中占有重要地位,但其生物量、生产和周转测定尚存在很大的不确定性,而且局域尺度空间变异机制尚不清楚。本研究分析了帽儿山温带天然次生林活细根生物量和死细根生物量在0~100 cm剖面的垂直分布与0~20 cm细根的季节动态、生产力和周转率,对比了采用连续根钻法(包括决策矩阵法和极差法)和内生长袋(直径3和5 cm)估测细根生产力和细根周转率,并探讨了可能影响细根的林分因子。结果表明: 76.8%的活细根生物量和62.9%的死细根生物量均集中在0~20 cm土层,随着深度增加,二者均呈指数形式减少。活细根生物量和死细根生物量的季节变化不显著,可能与冬季几乎无降雪而夏季降雨异常多有关。2种直径内生长袋估计的细根生产力无显著差异;对数转换后决策矩阵、极差法和内生长法估计的细根生产力和细根周转率差异显著。随着土壤养分增加,活细根生物量和死细根生物量比值显著增加,死细根生物量显著减少,但活细根生物量、细根生产力和细根周转率均无显著变化;细根周转率与前一年地上木质生物量增长量呈显著正相关,但与当年地上木质生物量增长量无显著相关关系。  相似文献   

12.
以落叶松人工林为研究对象,通过施N肥试验,对不同季节、不同土壤深度根系进行取样,研究了1级根外生菌根真菌侵染率和形态,及其与不同季节、土壤深度和土壤N有效性的关系.结果表明:外生菌根真菌对落叶松人工林1级根的侵染率显著受不同季节和土壤深度土壤N有效性的影响.在不同季节和土层之间,施N肥导致菌根真菌侵染率下降.与未侵染菌根真菌相比,菌根真菌侵染导致1级根形态发生明显改变,平均直径增加18.7%,平均根长缩短23.7%,比根长降低16.3%.这种根系形态变化在不同季节、不同土壤深度处理中表现明显.菌根真菌侵染改变了1级根形态,影响根系的生理生态过程.  相似文献   

13.
细根在森林生态系统C分配和养分循环过程中发挥着重要作用, 但对地下细根与植物多样性之间关系的研究相对较少。该研究选择中亚热带从单一树种的杉木(Cunninghamia lanceolata)人工林到多树种的常绿阔叶林(青冈(Cyclobalanopsis glauca)-石栎(Lithocarpus glaber)林)的不同植物多样性梯度, 用根钻法采集细根并测定其生物量, 用Win-RHIZO 2005C根系分析系统测定细根形态参数, 以验证以下3个假设: 1)植物种类丰富度高的林分其细根生产存在“地下超产”现象; 2)根系空间生态位的分离水平是否随着植物多样性增多而增大? 3)细根是否通过形态可塑性对林木竞争做出响应?结果显示: 从单一树种的杉木人工林到植物种类较复杂的青冈-石栎常绿阔叶林, 0-30 cm土层的林分细根总生物量和活细根生物量均呈增加的趋势, 即细根总生物量为杉木林(305.20 g·m-2) <马尾松(Pinus massoniana)林(374.25 g·m-2) <南酸枣(Choerospondias axillaris)林(537.42 g·m-2) <青冈林(579.33 g·m-2), 活细根生物量为杉木林(268.74 g·m-2) <马尾松林(299.15 g·m-2) <南酸枣林(457.32 g·m-2) <青冈林(508.47 g·m-2), 各森林类型之间的细根总生物量差异显著(p < 0.05), 但活细根生物量差异不显著。土壤垂直剖面上, 除杉木林细根生物量随土层变化不显著外, 其他森林类型的活细根生物量和总细根生物量均随土层变化显著, 表层细根生物量随树种多样性的升高呈减小趋势, 据此推测树种间的生态位分离水平逐渐增大。植物多样性的不同对林分的细根形态及空间分布格局影响不显著, 细根形态可塑性对生物量变化响应不明显。  相似文献   

14.
? Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? ? We observed the fine root lifespan of 12 temperate tree species using minirhizotrons in a common garden and compared their median lifespans with fine-root and whole-plant traits. We then determined which set of combined traits would be most useful in predicting patterns of root lifespan. ? Median root lifespan ranged widely among species (95-336?d). Root diameter, calcium content, and tree wood density were positively related to root lifespan, whereas specific root length, nitrogen (N)?:?carbon (C) ratio, and plant growth rate were negatively related to root lifespan. Root diameter and plant growth rate, together (R(2) =?0.62) or in combination with root N?:?C ratio (R(2) =?0.76), were useful predictors of root lifespan across the 12 species. ? Our results highlight linkages between fine root lifespan in temperate trees and plant functional traits that may reduce uncertainty in predictions of root lifespan or turnover across species at broader spatial scales.  相似文献   

15.
The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient-rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient-rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient-rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.  相似文献   

16.
帽儿山天然次生林20个阔叶树种细根形态   总被引:11,自引:1,他引:10       下载免费PDF全文
 细根在森林生态系统C分配和养分循环过程中发挥着重要作用。细根形态不但影响养分和水分的吸收, 而且与细根寿命和周转有密切关系。因此, 研究森林树种的细根形态对了解根系结构与功能、预测寿命与周转具有重要理论意义。该文根据细根分枝等级划分方法, 研究了东北帽儿山天然次生林20个阔叶树种1~5级根直径、根长和比根长等形态指标。结果表明, 20个树种中, 除5个树种1级根直径略大于2级和比根长略小于2级根外, 其余15个树种均表现为1级根直径和根长最小、比根长最高, 随着根序增加, 直径和根长增加, 而比根长降低。20个阔叶树种前3级根的累积根长均占前5级根总根长的80%以上。9个内生菌根侵染的树种的平均直径、根长和比根长均大于11个外生菌根侵染的树种。  相似文献   

17.
Question: Invasion of woody species into grasslands is a global phenomenon. This is also topical in semi‐natural temperate grasslands that are no longer profitable for agricultural management. Trees and grasses interact through harsh root competition, but below‐ground processes have been neglected in the dynamics of semi‐natural grasslands. Trees are thought to have a competitive advantage in resource‐rich and heterogeneous soils. We tested whether soil resource quantity and heterogeneity differ between paired temperate semi‐natural grasslands and forests (former grasslands), and whether this was caused abiotically by varying soil depth or biotically by fine roots. Location: Thin‐soil calcareous alvar grasslands with overgrown parts (young Pinus sylvestris forests) in W. Estonia. Methods: The quantity and spatial heterogeneity of soil resources (moisture and nutrients), soil depth, and root parameters (mass, length and specific length) were measured in 1‐m transects of 11 samples in 26 paired grasslands and forests. The quantity and heterogeneity of soil resources were compared between vegetation types and related to soil depth and root parameters. Results: Soil resources were lower and more heterogeneous in forests than in grasslands. The invasion of woody species was enhanced abiotically by deeper soil. Root mass was larger in the forests, but root length was longer in the grasslands. Both root mass and specific root length were more heterogeneous in the forests. Forest root length was negatively correlated with transient soil moisture patches and positively correlated with more persistent nutrient‐rich patches. No such relationship was found in grasslands. Conclusions: Abiotic soil heterogeneity (local deep‐soil patches) supports woody species invasion, but the trees themselves also biotically make soils more heterogeneous, which further enhances woody species invasion. Large trees use soil resources patchily, making soils biotically poorer and more heterogeneous in resources. The dynamics of temperate semi‐natural grasslands are strongly linked to below‐ground ecological processes, and high soil heterogeneity can be both the cause and the outcome of woody species invasion.  相似文献   

18.
《植物生态学报》2015,39(11):1071
AimsOur objectives were to determine differences in fine root production, its relationships with environmental factors, and its diameter- and depth-related distribution patterns between plantations of two subtropical tree species differing in successional stages. MethodsPlantation forests of an early-successional species, Pinus massoniana, and a late-successional species, Castanopsis carlesii, in Sanming, Fujian Province, were selected. Fine root production was monitored for two years using minirhizotrons methods. At the same time, environmental factors including monthly air temperature, monthly precipitation, soil temperature, and soil water content were determined.Important findings 1) During the two years, there was significant difference in annual fine root length production between these two forests, with annual production of P. massoniana plantation nearly four times that of C. carlesii plantation. Fine root length production under both forests showed significant monthly dynamics and maximized in summer, a season when most of fine roots were born. 2) Roots of 0-0.3 mm in diameter accounted for the largest proportion of total fine root length production. Fine roots were concentrated mostly at the 0-10 cm soil depth in P. massoniana plantation, but happened mostly at the 30-40 cm soil depth in the C. carlesii plantation. 3) Partial correlation analysis suggested that, monthly fine root production of both forests was significantly correlated with both air temperature and soil temperature, while it had no significant correlation with either rainfall or soil water content. Linear regression analysis illustrated that monthly fine root production was more correlated with air temperature and soil temperature in the P. massoniana plantation than in the C. carlesii plantation. It was concluded that fine root production in the early-successional P. massoniana plantation was not only much higher in amount, but also more sensitive to temperature, than that in the late-successional C. carlesii plantation.  相似文献   

19.
对不同演替阶段的树种细根生产动态及其对环境因子响应的差异目前仍缺乏了解。为此, 在福建省三明市选择了中亚热带演替前期的马尾松(Pinus massoniana)和演替后期的米槠(Castanopsis carlesii)两种人工林为研究对象, 采用微根管法对两种人工林的细根根长生产量及其动态进行了为期2年的观测, 并分析了细根生产量的径级和土层分布, 及月生产量动态与气温、降水、土壤温度、土壤含水率等环境因子间的关系。结果表明: 1)两种林分的细根生产量有显著差异, 马尾松人工林细根年根长生产量约为米槠人工林细根年根长生产量的4倍; 两种林分的细根生产量呈现显著的月变化, 峰值均出现在夏季, 且2年内总细根生产量以夏季的细根生产量最大。2)两林分均是直径0-0.3 mm的细根所占细根生产量比例最大; 土层分布上, 马尾松人工林0-10 cm土层细根所占生产量的比例最大, 米槠人工林30-40 cm土层细根所占生产量比例最大。3)偏相关分析表明, 两林分细根月生产量均与气温、土壤温度极显著相关或显著正偏相关, 与降水、土壤含水率的偏相关均不显著; 一元线性回归分析表明, 演替早期马尾松人工林细根月生产量与气温、土壤温度的相关性明显高于米槠人工林。该研究表明, 与演替后期的米槠人工林相比, 中亚热带演替早期的马尾松人工林细根生产量大, 且与温度间的相关性更高。  相似文献   

20.
Recent evidence suggests that significantly more plant carbon (C) is stored below ground than existing estimates indicate. This study explores the implications for biome C pool sizes and global C fluxes. It predicts a root C pool of at least 268 Pg, 68% larger than previously thought. Although still a low-precision estimate (owing to the uncertainties of biome-scale measurements), a global root C pool this large implies stronger land C sinks, particularly in tropical and temperate forests, shrubland and savanna. The land sink predicted from revised C inventories is 2.7 Pg yr(-1). This is 0.1 Pg yr(-1) larger than current estimates, within the uncertainties associated with global C fluxes, but conflicting with a smaller sink (2.4 Pg yr(-1)) estimated from C balance. Sink estimates derived from C inventories and C balance match, however, if global soil C is assumed to be declining by 0.4-0.7% yr(-1), rates that agree with long-term regional rates of soil C loss. Either possibility, a stronger land C sink or widespread soil C loss, argues that these features of the global C cycle should be reassessed to improve the accuracy and precision of C flux and pool estimates at both global and biome scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号