首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemotaxis by Naegleria fowleri for bacteria   总被引:1,自引:0,他引:1  
Naegleria fowleri amebae demonstrated a chemotactic and chemokinetic response toward live cells and extracts of Escherichia coli and other bacterial species when experiments were performed using a blind-well chemotaxis chamber. The peptide N-formyl-methionyl-leucyl-phenylalanine acted as a chemokinetic rather than a chemotactic factor for N. fowleri amebae. Competition experiments in which nerve cell extracts or bacteria were placed on either side of the filter in chemotaxis chambers resulted in increased movement towards bacteria. A scanning electron microscopy study of the interaction of N. fowleri with different bacterial species confirmed that when the amebae were near ingestible bacteria they moved toward the bacteria by pseudopod formation. Naegleria fowleri appeared to respond to bacteria by three interrelated but distinct processes: chemokinesis, chemotaxis, and formation of food cups.  相似文献   

2.
Naegleria fowleri amebae demonstrated a chemotactic and chemokinetic response toward live cells and extracts of Escherichia coli and other bacterial species when experiments were performed using a blind-well chemotaxis chamber. The peptide N-formyl-methionyl-leucyl-phenylalanine acted as a chemokinetic rather than a chemotactic factor for N. fowleri amebae. Competition experiments in which nerve cell extracts or bacteria were placed on either side of the filter in chemotaxis chambers resulted in increased movement towards bacteria. A scanning electron microscopy study of the interaction of N. fowleri with different bacterial species confirmed that when the amebae were near ingestible bacteria they moved toward the bacteria by pseudopod formation. Naegleria fowleri appeared to respond to bacteria by three interrelated but distinct processes: (a) chemokinesis, (b) chemotaxis, and (c) formation of food cups.  相似文献   

3.
Peripheral blood neutrophils and eosinophils from 70 patients and controls were studied for their in vitro chemotactic and chemokinetic responses towards synthetic leukotriene B4 (LTB4), 20-OH-LTB4 and 20-COOH-LTB4. All three factors induced chemotaxis and chemokinesis of cells. 20-OH-LTB4 was always less and 20-COOH-LTB4 even less active than the parent compound. Cells from patients with atopic eczema and T cell lymphoma moved less than cells from normal controls or from patients with psoriasis. In the presence of LTB4, 20-OH-LTB4 and buffer alone, more eosinophils than neutrophils moved to the lower side of the filter, while this did not occur with platelet activating factor as chemoattractant. Studies of neutrophil and eosinophil chemotaxis in the presence of LTB4 should therefore always take into account a high variability of the quantitative response which is donor and disease dependent.  相似文献   

4.
Cell migration is a key event in tissue repair and remodeling. PDGF, a growth factor for multiple target cells, has been shown to be a potent chemoattractant for a variety of mesenchymal cells. However, it is likely that PDGF-mediated cell migration will be influenced by other cytokines that can be produced during physiological and pathological conditions. Leukemia inhibitory factor (LIF), a cytokine that is produced by a variety of cells including osteoblasts, may promote bone formation, but the mechanism is not known. Since osteoblasts are responsible for laying down new matrix during skeletal remodeling, in this report we have examined whether PDGF or LIF influences the migration of osteoblasts. Among several cytokines and growth factors tested, only PDGF was able to elicit a major chemotactic (directed migration) and a minor chemokinetic (random-migration) response in osteoblasts. LIF alone was not active in either chemotaxis or chemokinesis but when included with PDGF it caused a reduction in chemokinesis. Further, pretreatment of osteoblasts with LIF caused an increase in PDGF-driven chemotaxis. Finally, osteoblasts exposed briefly to LIF synthesized a higher level of non-collagenous proteins upon further treatment with PDGF. These observations are consistent with a role for LIF in promoting bone formation, both by influencing directional migration of osteoblasts and in laying down new matrix. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The entry of neutrophils into tissue has been well characterised; however the fate of these cells once inside the tissue microenvironment is not fully understood. A variety of signal transduction pathways including those involving class I PI3 Kinases have been suggested to be involved in neutrophil migration. This study aims to determine the involvement of PI3 Kinases in chemokinetic and chemotactic neutrophil migration in response to CXCL8 and GM-CSF in a three-dimensional collagen gel, as a model of tissue. Using a three-dimensional collagen assay chemokinetic and chemotactic migration induced by CXCL8 was inhibited with the pan PI3 Kinase inhibitor wortmannin. Analysis of the specific Class I PI3 Kinase catalytic isoforms alpha, delta and gamma using the inhibitors PIK-75, PIK-294 and AS-605240 respectively indicated differential roles in CXCL8-induced neutrophil migration. PIK-294 inhibited both chemokinetic and chemotactic CXCL8-induced migration. AS-605240 markedly reduced CXCL8 induced chemokinetic migration but had no effect on CXCL8 induced chemotactic migration. In contrast PIK-75 inhibited chemotactic migration but not chemokinetic migration. At optimal concentrations of GM-CSF the inhibitors had no effect on the percentage of neutrophil migration in comparison to the control however at suboptimal concentrations wortmannin, AS-605240 and PIK-294 inhibited chemokinesis. This study suggests that PI3 Kinase is necessary for CXCL8 induced migration in a 3D tissue environment but that chemokinetic and chemotactic migration may be controlled by different isoforms with gamma shown to be important in chemokinesis and alpha important in chemotaxis. Neutrophil migration in response to suboptimal concentrations of GM-CSF is dependent on PI3 Kinase, particularly the gamma and delta catalytic isoforms.  相似文献   

6.
Rat pheochromocytoma PC12 cells have been widely used as a cell system for study of growth factor-stimulated cell functions. We report here that nerve growth factor (NGF) stimulated both chemotaxis (directional migration) and chemokinesis (random migration) of PC12 cells. Treatment with a MEK1/2-specific inhibitor (PD98059) or expression of a dominant negative variant of Ras differentially inhibited NGF-stimulated chemotaxis but not chemokinesis of PC12 cells. Priming of PC12 cells with NGF resulted in reduced extracellular signal-regulated kinase (ERK) activation and loss of chemotactic, but not chemokinetic, response. In addition, NGF stimulation of ERK is known to involve an early transient phase of activation followed by a late sustained phase of activation; in contrast, epidermal growth factor (EGF) elicits only early transient ERK activation. We observed that like NGF, EGF also stimulated both chemotaxis and chemokinesis, and treatment with PD98059 abolished the EGF-stimulated chemotaxis. Therefore, the early transient phase of ERK activation functioned in signaling chemotaxis; the late sustained phase of ERK activation did not seem to have an essential role. In addition, our results suggested that chemotactic signaling required a threshold level of ERK activation; at below threshold level of ERK activation, chemotaxis would not occur.  相似文献   

7.
Potassium pyroantimonate was used to localize sites of bound cations in human neutrophils under conditions of random migration, stimulated random migration (chemokinesis), and directed migration (chemotaxis). The cells were placed in a standard chamber in which 0.45-micron micropore filters separated the cells from the stimulus (buffer, Escherichia coli endotoxin-activated serum or the synthetic chemotactic peptide N-formyl-Met-Leu-Phe). The small pore filters permitted pseudopod formation but impeded cell imgration through the filter. Cells examined under all conditions had electron-dense precipitates of antimonate salts in some granules. However, antimonate deposits were localized in the condensed chromatin of the nucleus during random migration and associated to a large extent with the uncondensed nuclear chromatin during chemokinesis and chemotaxis. Under conditions of chemokinesis deposition of antimonate procipitates appeared on the cytoplasmic side of the plasma membrane of neutrophils whereas under conditions of chemotaxis cation deposits beneath the cell membrane were localized to the pseudopods which were directed toward the chemoattractant. In addition to endotoxin-activated serum, concentrations of N-formyl-Met-Leu-Phe which caused neutrophil chemotaxis (10(-8) M) also caused cation deposition beneath the cell membrane at the leading end of the cell regardless of whether albumin was present in the incubation media. However, with higher concentrations of the synthetic peptide (10(-5) M) which caused granule release and were not chemotactic, submembranous cation deposition was not seen. EDTA (10 mM) and EGTA (10 mM) removed nuclear, granular, and submembranous cation deposits from neutrophils examined under conditions of chemotaxis. X-ray microprobe analysis of antimonate deposits revealed the possible presence of calcium but did not detect sodium or magnesium. The data indicate that chemotactic factors induce submembranous deposition of cations, most likely Ca++, which localize to the leading edge of cells exposed to a gradient of chemoattractant.  相似文献   

8.
Tethered rotating cells of Rhodobacter sphaeroides varied widely in their stopping frequency; 45% of cells showed no stops of longer than 1 s, whereas others showed stops of up to several seconds. Individual cells alternated between stops and rotation at a fairly constant rate, without continuous variation. Addition of the chemoattractant propionate to free-swimming cells of R. sphaeroides increased the mean population swimming speed from 15 to 23 microns s-1. After correction for nonmotile cells, the percentage swimming at less than 5 microns s-1 dropped from approximately 22 to 8, whereas the percentage swimming at greater than 50 microns s-1 increased from 6 to 15. However, cells already swimming did not swim faster after propionate addition; the increase in the mean population speed after propionate addition was caused by an increase in the mean run length between stops from 25 to 101 microns. The increased run length was the result of a drop in both the stopping frequency and the length of a stop. Addition of propionate over the range of 10 microM to 1 mM decreased the stopping frequency; this decrease was almost entirely blocked by benzoate, a competitive inhibitor of propionate transport. The chemoattractants acetate and potassium had the same effect as propionate on the distribution of stopping frequency, which demonstrated that this is a general behavioral response to chemotactic stimulation. Adaptation to propionate stimulation was slow and very variable, cultures frequently showing little adaptation over 30 min. This characteristic may be the result of the lack of a highly specific chemosensory system in R. sphaeroides.  相似文献   

9.
Peripheral blood neutrophils and eosinophils from 70 patients and controls were studied for their in vitro chemotactic and chemokinetic responses towards synthetic leukotriene B4 (LTB4), 20-OH-LTB4 and 20-COOH-LTB4. All three factors induced chemotaxis and chemokinesis of cells. 20-OH-LTB4 was always less and 20-COOH-LTB4 even less active than the parent compound. Cells from patients with atopic eczema and T cell lymphoma moved less than cells from normal controls or from patients with psoriasis. In the presence of LTB4, 20-OH-LTB4 and buffer alone, more eosinophils than neutrophils moved to the lower side of the filter, while this did not occur with platelet activating factor as chemoattractant. Studies of neutrophil and eosinophil chemotaxis in the presence of LTB4 should therefore always take into account a high variability of the quantitative response which is donor and disease dependent.  相似文献   

10.
Rhodobacter sphaeroides is chemotactic to glutamate and most other amino acids. In Escherichia coli , chemotaxis involves a membrane-bound sensor that either binds the amino acid directly or interacts with the binding protein loaded with the amino acid. In R. sphaeroides , chemotaxis is thought to require both the uptake and the metabolism of the amino acid. Glutamate is accumulated by the cells via a binding protein-dependent system. To determine the role of the binding protein and transport in glutamate taxis, mutants were created by Tn 5 insertion mutagenesis and selected for growth in the presence of the toxic glutamine analogue γ-glutamyl-hydrazide. One of the mutants, R. sphaeroides MJ7, was defective in glutamate uptake but showed wild-type levels of binding protein. The mutant showed no chemotactic response to glutamate. Both glutamate uptake and chemotaxis were recovered when the gltP gene, coding for the H+-linked glutamate carrier of E. coli , was expressed in R. sphaeroides MJ7. It is concluded that the chemotactic response to glutamate strictly requires uptake of glutamate, supporting the view that intracellular metabolism is needed for chemotaxis in R. sphaeroides .  相似文献   

11.
Rhodobacter sphaeroides cells were tethered by their flagella and subjected to increasing and decreasing nutrient gradients. Using motion analysis, changes in flagellar motor rotation were measured and the responses of the cells to the chemotactic gradients were determined. The steepness and concentration ranges of increasing and decreasing gradients were varied, and the bacterial responses were measured. This allowed the limits of gradients that would invoke changes in flagellar behavior to be determined and thus predicts the nature of gradients that would evoke chemotaxis in the environment. The sensory threshold was measured at 30 nM, and the response showed saturation at 150 microM. The study determined that cells detected and responded to changing concentration rates as low as 1 nM/s for acetate and 5 nM/s for succinate. The complex sensory system of R. sphaeroides responded to both increasing and decreasing concentration gradients of attractant with different sensitivities. In addition, transition phases involving changes in the motor speed and the smoothness of motor rotation were found.  相似文献   

12.
Involvement of transport in Rhodobacter sphaeroides chemotaxis.   总被引:11,自引:9,他引:2       下载免费PDF全文
The chemotactic response to a range of chemicals was investigated in the photosynthetic bacterium Rhodobacter sphaeroides, an organism known to lack conventional methyl-accepting sensory transduction proteins. Strong attractants included monocarboxylic acids and monovalent cations. Results suggest that the chemotactic response required the uptake of the chemoeffector, but not its metabolism. If a chemoeffector could block the uptake of another attractant, it also inhibited chemotaxis to that attractant. Sodium benzoate was not an attractant but was a competitive inhibitor of the propionate uptake system. Binding in an active uptake system was therefore insufficient to cause a chemotactic response. At different concentrations, benzoate either blocked propionate chemotaxis or reduced the sensitivity of propionate chemotaxis, an effect consistent with its role as a competitive inhibitor of uptake. Bacteria only showed chemotaxis to ammonium when grown under ammonia-limited conditions, which derepressed the ammonium transport system. Both chemotaxis and uptake were sensitive to the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, suggesting an involvement of the proton motive force in chemotaxis, at least at the level of transport. There was no evidence for internal pH as a sensory signal. These results suggest a requirement for the uptake of attractants in chemotactic sensing in R. sphaeroides.  相似文献   

13.
In a search for novel leukocyte chemoattractants at sites of allergic inflammation, we found basophil-selective chemoattractant activity in extracts of human nasal polyps. The extracts were fractionated by reverse phase HPLC, and the resulting fractions were tested for leukocyte-stimulating activity using sensitive shape change assays. The basophil-selective activity detected was not depleted by a poxvirus CC-chemokine-binding protein affinity column. This activity was further purified by HPLC, and proteins in the bioactive fractions were analyzed by tandem electrospray mass spectrometry. Insulin-like growth factor-2 (IGF-2) was identified in these HPLC fractions, and the basophil-stimulating activity was inhibited by an anti-IGF-2-neutralizing Ab. Recombinant IGF-2 induced a substantial shape change response in basophils, but not eosinophils, neutrophils, or monocytes. IGF-2 stimulated chemokinesis of basophils, but not eosinophils or neutrophils, and synergized with eotaxin-1/CCL11 in basophil chemotaxis. IGF-2 also caused up-regulation of basophil CD11b expression and inhibited apoptosis, but did not stimulate degranulation or Ca(2+) flux. Recombinant IGF-1 exhibited similar basophil-selective effects as IGF-2, and both growth factors were detected in nasal polyp extracts by ELISA. This is the first demonstration of chemokinetic factors that increase the motility of basophils, but do not act on other granulocytes or monocytes. IGF-1 and IGF-2 could play a role in the selective recruitment of basophils in vivo.  相似文献   

14.
《Biorheology》1996,33(3):231-250
Leukocyte migration in vitro has been studied extensively during many years without providing satisfactory theoretical models for the different migratory behaviors (chemotaxis and chemokinesis) of leukocyte populations. The present study utilized the fluid gradient chamber, which is a new method to study leukocyte migration in filters. Human neutrophils were applied between two stacked filters and migrated in all directions under the influence of constant concentrations or chemotactic gradients of f-MLP, maintained in fluid phase density gradients. The distributions of the granulocytes over filter depth were fitted to theoretical functions composed by 1–3 Gaussian distributions, representing subpopulations. The results showed that the neutrophils migrated as two discrete subpopulations during chemokinetic stimulation (a constant concentration of f-MLP). One of the subpopulations showed less active and passive (slow sedimentation under the influence of gravity) translocation. The most mobile subpopulation was divided into two new subpopulations when exposed to chemotactic stimulation (concentration gradient of f-MLP), one of which responded chemotactically and one of which migrated in random directions. The properties of the different subpopulations where characterized in terms of diffusion coefficient (random migration), convection velocity (chemotactic migration) and sedimentation coefficient (passive translocation).  相似文献   

15.
Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Gαi signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14+ human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators.  相似文献   

16.
Thrombin-induced chemotaxis and aggregation of neutrophils   总被引:15,自引:0,他引:15  
Thrombin-induced neutrophil chemotaxis and aggregation were studied using cells isolated from either human or sheep blood. Sheep neutrophils (10(8) cells/ml) exhibited maximum chemotactic migration towards 10(-8)M human alpha-thrombin, 10(-8)M gamma-thrombin (which lacks the fibrinogen site), and 10(-12)MD-Phe-Pro-Arg-CH2-alpha-thrombin (catalytically inactive thrombin). Chemotactic responses of the same magnitude were obtained with human neutrophils (10(8) cells/ml). The chemotactic responses to thrombin were comparable to those obtained with diluted (1:200 v/v) zymosan activated serum (ZAS) and 10(-11)M FMLP. Premixing of the thrombin forms with hirudin in 1:1 stoichiometric amounts abolished the chemotaxis but not chemokinesis Aggregatory responses of human and sheep neutrophils were comparable for ZAS, alpha-thrombin, and gamma-thrombin. The responses of both human and sheep neutrophils to D-Phe-Pro-Arg-CH2-alpha-thrombin were attenuated, indicating that the proteolytic site may be involved in the aggregatory response. The results suggest that thrombin-induced neutrophil chemotaxis and aggregation are mediated by different mechanisms, since chemotaxis is a catalytically independent response whereas aggregation is an active site independent response.  相似文献   

17.
The role of the extracellular signal-regulated kinase (ERK) 1 and ERK2 in the neutrophil chemotactic response remains to be identified since a previously used specific inhibitor of MEK1 and MEK2, PD98059, that was used to provide evidence for a role of ERK1 and ERK2 in regulating chemotaxis, has recently been reported to also inhibit MEK5. This issue is made more critical by our present finding that human neutrophils express mitogen-activated protein (MAP) kinase/ERK kinase (MEK)5 and ERK5 (Big MAP kinase), and that their activities were stimulated by the bacterial tripeptide, formyl methionyl-leucyl-phenylalanine (fMLP). Dose response studies demonstrated a bell-shaped profile of fMLP-stimulated MEK5 and ERK5 activation, but this was left-shifted when compared with the profile of fMLP-stimulated chemotaxis. Kinetics studies demonstrated increases in kinase activity within 2 min, peaking at 3-5 min, and MEK5 activation was more persistent than that of ERK5. There were some similarities as well as differences in the pattern of activation between fMLP-stimulated ERK1 and ERK2, and MEK5-ERK5 activation. The up-regulation of MEK5-ERK5 activities was dependent on phosphatidylinositol 3-kinase. Studies with the recently described specific MEK inhibitor, PD184352, at concentrations that inhibited ERK1 and ERK2 but not ERK5 activity demonstrate that the ERK1 and ERK2 modules were involved in regulating fMLP-stimulated chemotaxis and chemokinesis. Our data suggest that the MEK5-ERK5 module is likely to regulate neutrophil responses at very low chemoattractant concentrations whereas at higher concentrations, a shift to the ERK1/ERK2 and p38 modules is apparent.  相似文献   

18.
Leukocyte chemotaxis is initiated by the binding of chemotactic factors to specific, high-affinity receptors. Amphotericin B, a polyene antibiotic that binds to membrane cholesterol, inhibits human neutrophil (PMN) chemotaxis. We examined the effects of this drug on PMN functions mediated by the oligopeptide chemotactic factor receptor. The antibiotic irreversibly inhibited chemotaxis and depressed the binding of the radiolabeled chemoattractant, fMet-Leu-[3H]Phe, to its receptor without affecting the receptor's specificity. The drug lowered the binding affinity of the receptor by up to fivefold and slightly increased its number. Doses of amphotericin B that depressed receptor affinity and inhibited chemotaxis did not diminish lysosomal enzyme secretion or superoxide anion production. Nystatin, a less potent polyene antibiotic, also diminished chemotactic factor binding, but to a lesser degree than amphotericin B did. A chemically unrelated antifungal agent had no effect on either binding or chemotaxis. Thus, pharmacologic manipulation can alter the affinity of the chemotactic factor receptor on human PMN; this alteration is associated with a change in receptor function. The data suggest that receptor affinity regulates or at least reflects its functional state, and that the transduction mechanisms for various biologic responses mediated by the chemoattractant receptor are heterogeneous. By pharmacologic alterations of receptor affinity, one may be able to modulate specific biologic responses elicited by chemoattractant receptor-ligand interactions.  相似文献   

19.
A role for IL-16 in the cross-talk between dendritic cells and T cells.   总被引:8,自引:0,他引:8  
Dendritic cells (DCs) in the periphery capture and process Ags, migrate to lymphoid organs, and initiate immune responses in T cells. IL-16, the soluble ligand for CD4, is a potent chemoattractant for CD4+ T cells, eosinophils, and monocytes and is mainly derived from activated T cells. Because migration is a fundamental property of DCs, we asked whether IL-16 induces chemotaxis in DCs and whether DCs are a source of IL-16. DCs were generated by culture of monocytes in IL-4 and GM-CSF for 6 days and subsequently highly purified employing magnetic beads. Migration was assayed by nitrocellulose and polycarbonate filter-based assays, and distinction of chemotaxis and chemokinesis was performed by a checkerboard analysis. Messenger RNA and protein data revealed constitutive expression and release of IL-16 by day-6 DCs. Gradients of rIL-16 induced a chemotactic response of DCs. Furthermore, the chemotactic activity of DC supernatant toward DCs themselves and T cells was mainly due to IL-16, because the addition of neutralizing Abs completely abrogated the migratory response. However, after induction of maturation by the addition of TNF-alpha and PGE2 DCs, neither expressed IL-16 mRNA nor produced IL-16 protein. We conclude that IL-16 may play a role in the trafficking of DCs and may be a major chemotactic signal from DCs toward themselves and toward T cells.  相似文献   

20.
The response of human endothelial cell migration to various extracellular matrix components and growth factors has been assessed. Human endothelial cells demonstrate increased chemotaxis and chemokinesis when placed in a modified Boyden chamber with endothelial cell growth factor (ECGF) used at a concentration of 10(-9) M. Anti-ECGF antibody inhibits the chemotactic response. Heparin (10(-8) to 10(-10) M) was also chemotactic and was shown to potentiate the chemotactic activity of ECGF. Although laminin, fibronectin, the polypeptide (epidermal, fibroblast, and nerve) growth factors, and collagen types I, II, III, IV, and V demonstrate a chemotactic response, these activities were one third to one half less than observed with ECGF. These data suggest that ECGF and heparin may play a significant role as response modifiers of human endothelial cell migration which may be relevant to tumor metastasis, wound healing, and atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号