共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells 总被引:1,自引:0,他引:1
The stimulation of DNA synthesis in lymphocyte populations was previously shown to depend strongly on the intracellular glutathione (GSH) level. Since T cell growth is known to depend on interleukin 2 (IL-2), the experiments in this report were designed to determine whether intracellular GSH depletion may inhibit IL-2 production or the IL-2 dependent DNA synthesis. Our experiments revealed that IL-2 production and DNA synthesis of mitogenically stimulated splenic T cells have indeed different requirements for GSH. The addition of relatively high concentrations of GSH (5 mM) to cultures of concanavalin A (Con A)-stimulated splenic T cells was found to augment strongly the DNA synthesis but inhibited the production of IL-2. Moderate intracellular GSH levels, however, are apparently not inhibitory for IL-2 production, since intracellular GSH depletion by cysteine starvation or by graded concentrations of DL-buthionine sulfoximine (BSO) had virtually no effect on IL-2-specific mRNA expression and the production of T cell growth factor (TCGF). The DNA synthesis activity, in contrast, was strongly suppressed after GSH depletion with either method. As in cultures of splenic T cells, GSH depletion had no substantial effect on the induction of IL-2 mRNA and TCGF production in several mitogenically stimulated T cell clones. Taken together, our experiments suggest that complex immune response may operate best at intermediate GSH levels that are not too high to inhibit IL-2 production but sufficient to support DNA synthesis. 相似文献
3.
4.
5.
Yamada Y Aoyama A Tocco G Boskovic S Nadazdin O Alessandrini A Madsen JC Cosimi AB Benichou G Kawai T 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(12):6063-6070
Denileukin diftitox (DD), a fusion protein comprising IL-2 and diphtheria toxin, was initially expected to enhance antitumor immunity by selectively eliminating regulatory T cells (Tregs) displaying the high-affinity IL-2R (α-β-γ trimers). Although DD was shown to deplete some Tregs in primates, its effects on NK cells (CD16(+)CD8(+)NKG2A(+)CD3(-)), which constitutively express the intermediate-affinity IL-2R (β-γ dimers) and play a critical role in antitumor immunity, are still unknown. To address this question, cynomolgus monkeys were injected i.v. with two doses of DD (8 or 18 μg/kg). This treatment resulted in a rapid, but short-term, reduction in detectable peripheral blood resting Tregs (CD4(+)CD45RA(+)Foxp3(+)) and a transient increase in the number of activated Tregs (CD4(+)CD45RA(-)Foxp3(high)), followed by their partial depletion (50-60%). In contrast, all NK cells were deleted immediately and durably after DD administration. This difference was not due to a higher binding or internalization of DD by NK cells compared with Tregs. Coadministration of DD with IL-15, which binds to IL-2Rβ-γ, abrogated DD-induced NK cell deletion in vitro and in vivo, whereas it did not affect Treg elimination. Taken together, these results show that DD exerts a potent cytotoxic effect on NK cells, a phenomenon that might impair its antitumoral properties. However, coadministration of IL-15 with DD could alleviate this problem by selectively protecting potentially oncolytic NK cells, while allowing the depletion of immunosuppressive Tregs in cancer patients. 相似文献
6.
Predominance of helper-inducer T cells in mesenteric lymph nodes and intestinal lamina propria of normal nonhuman primates 总被引:3,自引:0,他引:3
To define the characteristics of T cells associated with the gastrointestinal tract, the phenotypes and immunoregulatory function of T cells from mesenteric lymph node (MLN) and lamina propria lymphocytes (LPL) were compared to peripheral blood (PBL) and spleen lymphocytes in normal nonhuman primates. Mesenteric lymph node lymphocytes were characterized by a higher proportion of Leu-3+(CD4+) and 9.3+(alpha-Tp44) lymphocytes and a lower proportion of Leu-2+(CD8) lymphocytes than lymphocytes in other sites. LPL and MLN lymphocytes were both characterized by a higher proportion of cells having the helper-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) compared to PBL. A lower proportion of cells with the suppressor-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) was found in LPL, but not in MLN lymphocytes compared to PBL. In studies of the Leu-2+ T cells, it was found that whereas PBL, spleen, and LPL contained approximately equal proportions of Leu-2+, Leu-15+ (suppressor phenotype) and Leu-2+, 9.3+ lymphocytes (cytolytic T-cell phenotype), the MLN T cells were predominantly Leu-2+, 9.3+. Furthermore, the Leu-3/Leu-2 ratio was significantly higher in MLN compared to other sites. In pokeweed mitogen-stimulated cultures, the highest helper function for Ig synthesis was found in MLN. Cells from none of the sites studied showed evidence of increased suppressor cell activity. These results show that MLN and LPL T cells in normal nonhuman primates differ from T cells in peripheral blood and spleen. While both MLN and LPL have a high proportion of T cells with the helper-inducer phenotype, cells with the suppressor-effector phenotype are infrequent in MLN, while cells with the suppressor-inducer phenotype are infrequent in LPL. 相似文献
7.
Warncke M Calzascia T Coulot M Balke N Touil R Kolbinger F Heusser C 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(9):4405-4411
Safety of human therapeutic Abs is generally assessed in nonhuman primates. Whereas IgG1 shows identical FcγR interaction and effector function profile in both species, fundamental differences in the IgG2 and IgG4 Ab subclasses were found between the two species. Granulocytes, the main effector cells against IgG2- and IgG4-opsonized bacteria and parasites, do not express FcγRIIIb, but show higher levels of FcγRII in cynomolgus monkey. In humans, IgG2 and IgG4 adapted a silent Fc region with weak binding to FcγR and effector functions, whereas, in contrast, cynomolgus monkey IgG2 and IgG4 display strong effector function as well as differences in IgG4 Fab arm exchange. To balance this shift toward activation, the cynomolgus inhibitory FcγRIIb shows strongly increased affinity for IgG2. In view of these findings, in vitro and in vivo results for human IgG2 and IgG4 obtained in the cynomolgus monkey have to be cautiously interpreted, whereas effector function-related effects of human IgG1 Abs are expected to be predictable for humans. 相似文献
8.
Carroll RG Carpenito C Shan X Danet-Desnoyers G Liu R Jiang S Albelda SM Golovina T Coukos G Riley JL Jonak ZL June CH 《PloS one》2008,3(9):e3289
IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8(+) effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Ralpha was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies. 相似文献
9.
The immune system has evolved a variety of mechanisms to achieve and maintain tolerance both centrally and in the periphery. Central tolerance is achieved through negative selection of autoreactive T cells, while peripheral tolerance is achieved primarily via three mechanisms: activation-induced cell death, anergy, and the induction of regulatory T cells. Three forms of these regulatory T cells have been described: those that function via the production of the cytokine IL-10 (T regulatory 1 cells), transforming growth factor beta (Th3 cells), and a population of T cells that suppresses proliferation via a cell-contact-dependent mechanism (CD4+CD25+ TR cells). The present review focuses on the third form of peripheral tolerance - the induction of regulatory T cells. The review will address the induction of the three types of regulatory T cells, the mechanisms by which they suppress T-cell responses in the periphery, the role they play in immune homeostasis, and the potential these cells have as therapeutic agents in immune-mediated disease. 相似文献
10.
The present study has focused on the analysis of cytokine- and Ig-producing mononuclear cells (MC) that reside in the salivary glands and their associated tissues (SGAT) in the oral region. The SGAT are located under the mandibular area and consist of submandibular glands, periglandular lymph nodes, and cervical lymph nodes. MC were isolated from individual SGAT and examined for T cell subsets and TCR expression, in comparison with T cells obtained from other mucosa-associated and systemic tissues. Forty to fifty percent of MC in submandibular glands were CD3+ T cells, equally divided into CD4+ CD8- and CD4- CD8+ T cell subsets. On the other hand, the intestinal lamina propria and Peyer's patches possessed a approximately 2 to 3:1 ratio of CD4+ CD8- to CD4- T cells. A high frequency of CD4- CD8- (double negative) (DN) T cells (approximately 6 to 10%) was also isolated from submandibular glands. In contrast, approximately 70 to 90% of MC in periglandular lymph nodes and cervical lymph nodes were CD3+ T cells and like the peripheral lymph nodes consisted of fivefold higher numbers of CD4+ CD8- than CD4- CD8+ T cells, with low numbers of DN cells (less than 5%). When expression of gamma/delta and alpha/beta TCR was examined in individual T cell subsets of submandibular glands, the CD4- CD8+ and DN T cell fractions contained 25% and 100% gamma/delta TCR+ cells, respectively. On the other hand, essentially all CD4+ CD8- T cells in SGAT as well as CD4- CD8+ cells in periglandular lymph nodes and cervical lymph nodes were alpha/beta TCR+ T cells. When cytokine production was examined by using IFN-gamma- and IL-5-specific enzyme-linked immunospot assays, the CD3+ CD4+ CD8- T cells in submandibular glands contained T cells spontaneously producing IFN-gamma and IL-5. Further, IL-5 spot-forming cells (SFC) were two- to threefold greater in number, compared with IFN-gamma SFC. The periglandular lymph node T cells contained cytokine producing cells with a ratio of 2:1 for IL-5 and IFN-gamma SFC cells, whereas cervical lymph node T cells did not produce cytokines unless stimulated with T cell mitogens. When the isotype distribution of Ig-producing cells was examined among SGAT, submandibular glands contained large numbers of IgA-producing cells, with few IgM- and IgG-producing cells, a pattern similar to that of the lamina propria. Further, elevated numbers of IgA-secreting cells were also seen in periglandular lymph nodes but not in cervical lymph nodes.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
11.
Anti-TNF treatment is effective in a majority of rheumatoid arthritis (RA), however, this treatment can unexpectedly trigger the onset or exacerbate multiple sclerosis (MS). Recent progress in cellular immunology research provides a new framework to analyze the possible mechanism underlying these puzzling contradictory effects. The delicate balance of protective CD4(+)FoxP3(+) regulatory T cells (Tregs) and pathogenic CD4(+)FoxP3(-) effector T cells (Teffs) is crucial for the outcome of anti-TNF treatment of autoimmune disease. There is convincing evidence that TNF, in addition to stimulating Teffs, is able to activate and expand Tregs through TNFR2, which is preferentially expressed by Tregs. Therefore, the contrasting effects of TNF on Tregs and Teffs are likely to determine the therapeutic effect of anti-TNF treatment. In this review, we discuss the current understanding of the general effect of TNF on the activation of T cells, and the impact of TNF on the function of Teffs and Tregs. Understanding the differential effects of TNF on Teffs and Tregs is fundamentally required for the design of more effective and safer anti-TNF or anti-TNF receptor(s) therapeutic strategy for autoimmune diseases. 相似文献
12.
S L Swain G Huston S Tonkonogy A Weinberg 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(9):2991-3000
We have investigated the effects of TGF-beta on the in vitro development of different subsets of Th cells and find that addition of TGF-beta results in the generation of cell populations with distinct characteristics that resemble those of memory cells. Resting, short-lived CD4+ precursor T cells can be induced by mitogen stimulation to proliferate and differentiate in in vitro cultures and after 4 to 7 days will generate a population of cells that, when restimulated, synthesize and secrete high titers of a wide variety of lymphokines. It has been previously reported that the presence of the lymphokine IL-4 during in vitro culture results in the generation of a population of "effector" cells that can be rapidly induced by mitogen to synthesize and secrete high titers of IL-4, IL-5, IL-3, IFN-gamma, and granulocyte-macrophage-CSF. We find that TGF-beta added to CD4+ precursors, suppresses the development of IL-4/IL-5 secreting effectors and results instead in the development of cells secreting IL-2 and IFN-gamma. CD4 T cells generated in the presence of TGF-beta show little or no expression of CD45RB, in contrast to those developed in IL-4 (or in IL-2 alone) that express high surface densities of CD45RB. The kinetics of cell recovery also differs when TGF-beta rather than IL-4 is present during culture. Cultures of effectors generated in TGF-beta, initially have low cell recoveries but cells expand dramatically between 4 to 7 days in the presence of IL-2 whereas IL-4 induces optimum cell recovery at day 4 and cell recoveries decrease with further culture. The properties of cells grown in TGF-beta thus show several attributes in common with memory or highly differentiated CD4+ cells, i.e., IL-2 as a predominant cytokine, easy propagation and low expression of CD45RB. Therefore, we propose the hypothesis that TGF-beta favors the development of a population(s) of Th cells that is likely to give rise to memory cells although IL-4 favors development of a short-lived effector population that secretes Th2 lymphokines. 相似文献
13.
Wang J Su B Ding Z Du X Wang B 《Biochemical and biophysical research communications》2008,372(3):491-496
Cimetidine (CIM), a histamine 2-receptor antagonist, is postulated to enhance immune responses owing to its inhibitory effects on suppressor T cells. In this report, we evaluated effects of cimetidine on the potency of antigen-specific immunity generated by DNA vaccine encoding hepatitis B surface antigen (HBsAg, pcD-S2). Our data demonstrate that CIM as adjuvant significantly increased HBsAg-specific cell-mediated and humoral immunities that were characterized by higher Ig2a/IgG1 ratio. In addition, CIM significantly promotes an elevated level of IL-4 and IFN-γ in antigen-specific CD4+ T cells and a robust antigen-specific cytotoxic response in the animals immunized with pcD-S2 plus CIM. Further, CIM induces pro-inflammatory cytokine expression such as the IL-12 and down-regulates anti-inflammatory cytokine expression such as IL-10 and TGF-β, which may lead to an impairment of CD4+CD25+ Treg cell-mediated suppression. Collectively these findings suggest that CIM enhances the immune responses of HBV DNA vaccine through the stimulation of pro-inflammatory and inhibition of anti-inflammatory cytokine expression patterns. 相似文献
14.
Regulatory T cell expression of herpesvirus entry mediator suppresses the function of B and T lymphocyte attenuator-positive effector T cells 总被引:2,自引:0,他引:2
Tao R Wang L Murphy KM Fraser CC Hancock WW 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(10):6649-6655
The binding of herpesvirus entry mediator (HVEM) to B and T lymphocyte attenuator (BTLA) is known to activate an inhibitory signaling cascade in effector T (Teff) cells, but we now report that the HVEM-BTLA pathway is also important to the suppressive function of regulatory T cells (Tregs). Although naive T cells up-regulated BTLA upon TCR activation, Treg expression of BTLA remained low, regardless of TCR activation. Moreover, BTLA(-/-) CD4(+)CD25(+) Tregs had normal suppressive activity, whereas BTLA(-/-) Teff cells were more resistant than wild-type Teff cells to suppression by Tregs, suggesting BTLA expression by Teff cells was required for their suppression by Tregs. In contrast to BTLA, HVEM expression was comparable in naive Tregs vs Teff cells, but after stimulation HVEM expression was quickly down-regulated by Teff cells, whereas HVEM was further up-regulated by Tregs. HVEM(-/-) Tregs had decreased suppressive activity as compared with wild-type Tregs, indicating that Treg expression of HVEM was required for optimal suppression. Consistent with this, T cells from Scurfy mice (FoxP3 mutant) lacked HVEM gene expression, and adoptively transferred wild-type but not HVEM(-/-) Tregs were able to control alloresponses in vivo by normal Teff cells. Our data demonstrate that Tregs can exert their effects via up-regulation of the negative costimulatory ligand HVEM, which upon binding to BTLA expressed by Teff cells helps mediate the suppressive functions of Tregs in vitro and in vivo. 相似文献
15.
Antibody-independent antiviral function of memory CD4+ T cells in vivo requires regulatory signals from CD8+ effector T cells 总被引:3,自引:0,他引:3
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity. 相似文献
16.
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines. 相似文献
17.
Quantitation of apolipoprotein E mRNA in the liver and peripheral tissues of nonhuman primates 总被引:15,自引:0,他引:15
T C Newman P A Dawson L L Rudel D L Williams 《The Journal of biological chemistry》1985,260(4):2452-2457
A sensitive DNA-excess solution hybridization assay was used to quantitate apo-E mRNA in the liver and peripheral tissues of two nonhuman primates, Macaca fascicularis and Cercopithecus aethiops. When expressed on the basis of total RNA, apo-E mRNA values for M. fascicularis adrenal, brain, testis, and spleen ranged from 17-52% of the liver value. Apo-E mRNA values for mesenteric lymph node, kidney, thymus, and skeletal muscle were 1-5% of the liver value. When expressed on a cellular basis, apo-E mRNA was most abundant in the liver at approximately 1200 molecules/cell. Peripheral tissues showed a continuous range of apo-E mRNA from 1.5 molecules/cell in the thymus up to 350 molecules/cell in the brain. Similar results were obtained with peripheral tissues from C. aethiops in which case apo-E mRNA also was found in skin, lung, skeletal muscle, small intestine, and vascular tissues such as heart, aorta, and brachial artery. Calculation of the total apo-E mRNA/organ showed that most of the apo-E mRNA was present in the liver. However, summation of apo-E mRNA in peripheral tissues indicated that 20-40% of total body apo-E mRNA was extrahepatic. This results indicates that apo-E made in peripheral tissues may play a quantitatively important role in cholesterol metabolism since peripheral tissues have the potential to contribute a significant fraction of plasma apo-E. 相似文献
18.
The commensal microbiota co-exists in a mutualistic relationship with its human host. Commensal microbes play critical roles in the regulation of host metabolism and immunity, while microbial colonization, conversely, is under control of host immunity and metabolic pathways. These interactions are of central importance to the maintenance of homeostasis at mucosal surfaces and their perturbation can provide the basis for atopic and chronic inflammatory diseases such as asthma and inflammatory bowel disease (IBD). Recent evidence has revealed that natural killer T (NKT) cells, a subgroup of T cells which recognizes self and microbial lipid antigens presented by CD1d, are key mediators of host-microbial interactions. Mucosal and systemic NKT cell development is under control of the commensal microbiota, while CD1d regulates microbial colonization and influences the composition of the intestinal microbiota. Here, we outline the mechanisms of bidirectional cross-talk between the microbiota and CD1d-restricted NKT cells and discuss how a perturbation of these processes can contribute to the pathogenesis of immune-mediated disorders at mucosal surfaces. 相似文献
19.
Cutting edge: CCR7+ and CCR7- memory T cells do not differ in immediate effector cell function 总被引:10,自引:0,他引:10
Unsoeld H Krautwald S Voehringer D Kunzendorf U Pircher H 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(2):638-641
It has been proposed that expression of the chemokine receptor CCR7 represents a defining factor for nonpolarized central (CCR7(+)) and polarized effector memory (CCR7(-)) T cells. In this study, we have tested this hypothesis using in vivo-activated T cells from P14 and SMARTA TCR-transgenic (tg) mice specific for MHC class I- and II-restricted epitopes of the lymphocytic choriomeningitis virus (LCMV) glycoprotein. CCR7 cell surface expression on TCR-tg cells was monitored with a CC chemokine ligand 19-Ig fusion protein. CC chemokine ligand 19-Ig staining separated TCR-tg cells activated by LCMV infection into CCR7(-) and CCR7(+) effector/memory T cell populations. Nonetheless, both T cell populations isolated from spleen and liver produced identical amounts of IFN-gamma after short-term Ag stimulation. Furthermore, CCR7(+) and CCR7(-) CD8 TCR-tg cells from LCMV-infected mice exhibited similar lytic activity against LCMV peptide-coated target cells. These results question the proposed concept of differential effector cell function of CCR7(+) and CCR7(-) memory T cells. 相似文献
20.
Verbinnen B Billiau AD Vermeiren J Galicia G Bullens DM Boon L Cadot P Hens G Dewolf-Peeters C Van Gool SW Ceuppens JL 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(2):1034-1042
Blocking of costimulatory signals for T cell activation leads to tolerance in several transplantation models, but the underlying mechanisms are incompletely understood. We analyzed the involvement of regulatory T cells (Treg) and deletion of alloreactive cells in the induction and maintenance of tolerance after costimulation blockade in a mouse model of graft-vs-host reaction. Injection of splenocytes from the C57BL/6 parent strain into a sublethally irradiated F(1) offspring (C57BL/6 x C3H) induced a GVHR characterized by severe pancytopenia. Treatment with anti-CD40L mAb and CTLA4-Ig every 3 days during 3 wk after splenocyte injection prevented disease development and induced a long-lasting state of stable mixed chimerism (>120 days). In parallel, host-specific tolerance was achieved as demonstrated by lack of host-directed alloreactivity of donor-type T cells in vitro and in vivo. Chimerism and tolerance were also obtained after CD25(+) cell-depleted splenocyte transfer, showing that CD25(+) natural Treg are not essential for tolerance induction. We further show that costimulation blockade results in enhanced Treg cell activity at early time points (days 6-30) after splenocyte transfer. This was demonstrated by the presence of a high percentage of Foxp3(+) cells among donor CD4(+) cells in the spleen of treated animals, and our finding that isolated donor-type T cells at an early time point (day 30) after splenocyte transfer displayed suppressive capacity in vitro. At later time points (>30 days after splenocyte transfer), clonal deletion of host-reactive T cells was found to be a major mechanism responsible for tolerance. 相似文献