首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Previously we described a system whereby human peripheral blood T cells stimulated for 8 days in a cytokine cocktail acquired effector function for contact-dependent induction of proinflammatory cytokines from monocytes. We termed these cells cytokine-activated (Tck) cells and found that the signalling pathways elicited in the responding monocytes were identical whether they were placed in contact with Tck cells or with T cells isolated from rheumatoid arthritis (RA) synovial tissue.

Methods

Here, using magnetic beads and fluorescence-activated cell sorting, we extensively phenotype the Tck effector cells and conclude that effector function resides within the CD4+CD45RO+, CCR7-, CD49dhigh population, and that these cells are derived from the effector memory CD4+ T cells in resting blood.

Results

After stimulation in culture, these cells produce a wide range of T-cell cytokines, undergo proliferation and differentiate to acquire an extensively activated phenotype resembling RA synovial T cells. Blocking antibodies against CD69, CD18, or CD49d resulted in a reduction of tumour necrosis factor-α production from monocytes stimulated with CD4+CD45RO+ Tck cells in the co-culture assay. Moreover, blockade of these ligands also resulted in inhibition of spontaneous tumour necrosis factor-α production in RA synovial mononuclear cell cultures.

Conclusion

Taken together, these data strengthen our understanding of T-cell effector function, highlight the multiple involvement of different cell surface ligands in cell-cell contact and, provide novel insights into the pathogenesis of inflammatory RA disease.  相似文献   

2.
3.
4.

Background

T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure.

Methods

The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.

Results

CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.

Conclusion

HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.  相似文献   

5.
6.

Background

CD8+Foxp3+ T lymphocytes have been detected in tumors. However, the distribution, phenotypic features, and regulation of these cells in gastric cancer remain unknown.

Methods

The levels of CD8+Foxp3+ T lymphocytes in the peripheral blood, tumor-draining lymph nodes, non-tumor tissues, and tumor tissues of patients with gastric cancer were detected by flow cytometry. Foxp3 induction in CD8+Foxp3? T cells was investigated in vitro. The suppressive function of CD8+Foxp3+ T lymphocytes was analyzed by their effect on CD4+ T-cell proliferation and IFN-γ production. The percentages of CD8+Foxp3+ T lymphocytes were evaluated for the association with tumor stage.

Results

The frequency of CD8+Foxp3+ T lymphocytes in tumor tissues was significantly higher than that in non-tumor tissues, and similar results were also observed in tumor-draining lymph nodes compared with peripheral blood. Most intratumoral CD8+Foxp3+ T lymphocytes were activated effector cells (CD45RA?CD27?). TGF-β1 levels were positively correlated with the frequency of CD8+Foxp3+ T lymphocytes in tumor tissues, and in vitro TGF-β1 could induce the generation of CD8+Foxp3+ T lymphocytes in a dose-dependent manner. Furthermore, intratumoral CD8+Foxp3+ T lymphocytes suppressed the proliferation and IFN-γ production of CD4+ T cells. Finally, intratumoral CD8+Foxp3+ T lymphocytes were significantly increased with tumor progression in terms of tumor-node-metastasis (TNM) stage.

Conclusions

Our data have shown that increased intratumoral CD8+Foxp3+ T lymphocytes are associated with tumor stage and potentially influence CD4+ T-cell functions, which may provide insights for developing novel immunotherapy protocols against gastric cancer.  相似文献   

7.
CD8+ T cells in the circulation of patients with head and neck cancer (HNC) were previously shown to be significantly more sensitive to, and preferentially targeted for, apoptosis than CD4+ T cells (Hoffmann et al., Clin Cancer Res, 8:2553–2562, 2002). To distinguish global from CD8+ subset-specific apoptosis, we studied Annexin-binding to naïve, memory, and effector subsets of CD8+ cells by multicolor flow cytometry. Age-related changes in naïve and effector CD8+ cell subsets were observed in patients and normal controls (NC). The frequencies of naïve (CD28+CD45RO-) CD8+ T cells were lower and those of memory (CD28+CD45RO+) and effector (CD28-) CD8+ T cells significantly higher in the circulation of HNC patients relative to age-matched NC. Among CD8+ T cells, the CD28- effector cell subset contained the highest proportion of Annexin-binding cells, while the naïve CD28+CD45RO- subset contained the lowest. This suggested a high turnover rate of the CD8+CD28- effector cell subset in patients with HNC, which was being compensated by a rapid transition of naïve CD8+ T cells to the effector cell pool. Following tumor resection, the frequency of CD8+CD28- T cells normalized in the patients, an indication that the presence of tumor had an influence on the size of CD8+CD28- T-cell pool. Ex vivo, in mixed lymphocyte-tumor cultures (MLTC) with semiallogeneic T cells as responders, CD8+CD28- T cells could be generated from CD8+CD28+ cells by repeated stimulations with tumor cells. These CD8+CD28- effector cells lysed the tumor, produced IFN- in response to the tumor, and strongly expressed granzyme B. Thus, the high rate of their apoptosis in the circulation of patients with HNC might be expected to contribute to tumor progression. However, the ex vivo generation of this cell subset was suppressed by strong CD28/B7 ligation or by overexpresson of MHC molecules on tumor cells, suggesting that adequate costimulation is necessary for protection from apoptosis. It appears that interactions of immune and tumor cells might determine the fate of this terminally differentiated effector cell subset.Supported in part by NIH grants: PO-1 DE 12321 and RO-1 CA 82016 to Theresa L. Whiteside.  相似文献   

8.
Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6−/− OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6−/− OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.Subject terms: Interferons, Bacterial infection  相似文献   

9.
The killer cell lectin-like receptor G1, KLRG1, is a cell surface receptor expressed on subsets of natural killer (NK) cells and T cells. KLRG1 was recently found to recognize E-cadherin and thus inhibit immune responses by regulating the effector function and the developmental processes of NK and T cells. E-cadherin is expressed on epithelial cells and exhibits Ca2+-dependent homophilic interactions that contribute to cell-cell junctions. However, the mechanism underlying the molecular recognition of KLRG1 by E-cadherin remains unclear. Here, we report structural, binding, and functional analyses of this interaction using multiple methods. Surface plasmon resonance demonstrated that KLRG1 binds the E-cadherin N-terminal domains 1 and 2 with low affinity (Kd ∼7–12 μm), typical of cell-cell recognition receptors. NMR binding studies showed that only a limited N-terminal region of E-cadherin, comprising the homodimer interface, exhibited spectrum perturbation upon KLRG1 complex formation. It was confirmed by binding studies using a series of E-cadherin mutants. Furthermore, killing assays using KLRG1+NK cells and reporter cell assays demonstrated the functional significance of the N-terminal region of E-cadherin. These results suggest that KLRG1 recognizes the N-terminal homodimeric interface of domain 1 of E-cadherin and binds only the monomeric form of E-cadherin to inhibit the immune response. This raises the possibility that KLRG1 detects monomeric E-cadherin at exposed cell surfaces to control the activation threshold of NK and T cells.Natural killer (NK)3 cells play a critical role in the innate immune system because of their ability to kill other cells. For example, NK cells can kill virus-infected cells and tumor cells without presensitization to a specific antigen, and they produce various cytokines, including interferon-γ and tumor necrosis factor-α (1). NK cells are controlled by both inhibitory and activating receptors that are expressed on their surfaces (2). The killer cell Ig-like receptor, Ly49, CD94/NKG2, and paired Ig-like type 2 receptor families include both inhibitory and activating members and thus are designated as paired receptor families. On the other hand, some inhibitory receptors, including KLRG1 (killer cell lectin-like receptor G1), and activating receptors, such as NKG2D, also exist. The integration of the signals from these receptors determines the final functional outcome of NK cells.These inhibitory and activating receptors can also be divided into two structurally different groups, the Ig-like receptors and the C-type lectin-like receptors, based on the structural aspects of their extracellular regions. The Ig-like receptors include killer cell Ig-like receptors and the leukocyte Ig-like receptors, and the C-type lectin-like receptors include CD94/NKG2(KLRD/KLRC), Ly49(KLRA), NKG2D(KLRK), NKR-P1(KLRB), and KLRG1. Many of these immune receptors recognize major histocompatibility complex class I molecules or their relatives (24), but there are still many orphan receptors expressed on NK cells. KLRG1 was one such orphan receptor; however, E-cadherin was recently found to be a ligand of KLRG1 (5, 6). Although major histocompatibility complex-receptor interactions have been extensively examined, the molecular basis of non-major histocompatibility complex ligand-receptor recognition is poorly understood.KLRG1 is a type II membrane protein, with one C-type lectin domain in the extracellular region, one transmembrane region, and one immunoreceptor tyrosine-based inhibitory motif. KLRG1 is expressed on a subset of mature NK cells in spleen, lungs, and peripheral blood during normal development. KLRG1 expression is induced on the surface of NK cells during viral responses (7, 8). NK cells expressing KLRG1 produce low levels of interferon-γ and cytokines and have a slow in vivo turnover rate and low proliferative responsiveness to interleukin-15 (9). Furthermore, KLRG1 is recognized as a marker of some T cell subsets, as follows. KLRG1 defines a subset of T cells, short lived effector CD8 T cells (SLECs), which are mature effector cells that express high levels of KLRG1 and cannot be differentiated into long lived memory CD8 T cells. In addition, memory precursor effector cells express low levels of KLRG1 and harbor the potential to become long lived memory CD8 T cells (10). Since SLECs exhibit stronger effector function than memory precursor effector cells, it is potentially beneficial, in terms of preventing harmful excess cytotoxicity, that SLECs express KLRG1 at a higher level to inhibit the immune response. Taken together, the expression of KLRG1 during the viral response and normal development might confer the inhibition of effector function and the regulation of NK and T cell proliferation (9).E-cadherin plays a pivotal role in Ca2+-dependent cell-cell adhesion and also contributes to tissue organization and development (1114). E-cadherin is primarily expressed on epithelial cells, and its extracellular region consists of several domains that include cadherin motifs (15, 16). These domains mediate Ca2+-dependent homophilic interactions to facilitate cell adhesion. When E-cadherins form cis- or trans-homodimers, they utilize their N-terminal regions as an interface, which can dock with domain 1 of another E-cadherin to form strand exchange (17). Therefore, the N-terminal region plays important roles in homophilic binding and cell adhesion.KLRG1 recognizes E-cadherins (and other class I cadherins), which are widely expressed in tissues and form tight adhesive cell-cell junctions, and Ito et al. (5) demonstrated that E-cadherin binding by KLRG1 inhibits NK cytotoxicity. Further, Gründermann et al. (6) showed that the E-cadherin-KLRG1 interaction inhibits the antigen-induced proliferation and induction of the cytolytic activity of CD8 T cells. Therefore, it is plausible that E-cadherin recognition by KLRG1, expressed on the surfaces of NK cells and T cells, may raise their activation thresholds by transducing inhibitory signals. Such an inhibition would prevent the excess injury of normal cells, which might result in inflammatory autoimmune diseases. KLRG1 may also have an important role in monitoring and removing cancer cells that lose E-cadherin expression. A recent report demonstrated that N-terminal domains 1 and 2 of E-cadherin are critical for KLRG1 recognition (18); however, despite accumulating evidence supporting the functional importance of the E-cadherin-KLRG1 interaction, the molecular basis of this interaction is poorly understood. Here, we report that the N-terminal region of E-cadherin, comprising the dimer interface, is the binding site for KLRG1. This suggests that KLRG1 does not recognize the dimeric form of E-cadherin but rather recognizes the monomeric form, which is exposed on the cell surfaces of disrupted or infected cells. This may suppress excess immune responses.  相似文献   

10.

Background

Despite inducing a sustained increase in CD4+ T cell counts, intermittent recombinant IL-2 (rIL-2) therapy did not confer a better clinical outcome in HIV-infected patients enrolled in large phase III clinical trials ESPRIT and SILCAAT. Several hypotheses were evoked to explain these discrepancies. Here, we investigated the impact of low and high doses of IL-2 in Rhesus macaques of Chinese origin infected with SIVmac251 in the absence of antiretroviral therapy (ART).

Results

We demonstrated that rIL-2 induced a dose dependent expansion of CD4+ and CD8+ T cells without affecting viral load. rIL-2 increased CD4 and CD8 Treg cells as defined by the expression of CD25highFoxP3+CD127low. We also showed that rIL-2 modulated spontaneous and Fas-mediated CD4+ and CD8+ T cell apoptosis. The higher dose exhibited a dramatic pro-apoptotic effect on both CD4+ and CD8+ T cell populations. Finally, all the animals treated with rIL-2 developed a wasting syndrome in the month following treatment simultaneously to a dramatic decrease of circulating effector T cells.

Conclusion

These data contribute to the understanding of the homeostatic and dosage effects of IL-2 in the context of SIV/HIV infection.  相似文献   

11.

Background

Antigen-derived HLA class I-restricted peptides can generate specific CD8+ T-cell responses in vivo and are therefore often used as vaccines for patients with cancer. However, only occasional objective clinical responses have been reported suggesting the necessity of CD4+ T-cell help and possibly antibodies for the induction of an effective anti-tumor immunity in vivo. The SSX2 gene encodes the cancer testis antigen (CTA) HOM-MEL-40/SSX2, which is frequently expressed in a wide spectrum of cancers. Both humoral and cellular immune responses against SSX2 have been described making SSX2 an attractive candidate for vaccine trials.

Methods

SYFPEITHI algorithm was used to predict five pentadecamer peptides with a high binding probability for six selected HLA-DRB1 subtypes (*0101, *0301, *0401, *0701, *1101, *1501) which are prevalent in the Caucasian population.

Results

Using peripheral blood cells of 13 cancer patients and 5 healthy controls, the HOM-MEL-40/SSX2-derived peptide p101-111 was identified as an epitope with dual immunogenicity for both CD4+ helper and cytotoxic CD8+ T cells. This epitope also reacted with anti-SSX2 antibodies in the serum of a patient with breast cancer. Most remarkably, SSX2/p101-111 simultaneously induced specific CD8, CD4, and antibody responses in vitro.

Conclusions

p101-111 is the first CTA-derived peptide which induces CD4+, CD8+, and B-cell responses in vitro. This triple-immunogenic peptide represents an attractive vaccine candidate for the induction of effective anti-tumor immunity.  相似文献   

12.

Objective

IRX-2, a primary cell-derived biologic with pleotropic immune activity, was shown to induce increased lymphocyte infiltrations into the tumor of patients with head and neck squamous cell cancer (HNSCC) after 10?days of neoadjuvant therapy (Berinstein et al. 2011). In the same patients enrolled in the Phase II study, peripheral blood lymphocyte subsets were monitored pre- and post-IRX-2 therapy to evaluate changes induced by IRX-2.

Methods

Absolute lymphocyte numbers were determined in whole blood using the TetraONE System. Lymphocytes were further separated on Ficoll—Hypaque gradients and evaluated by multiparameter flow cytometry. Lymphocyte numbers, including regulatory T cells (Treg) and na?ve, memory and effector T cells, were compared in pre- and post-therapy specimens.

Results

Total lymphocyte numbers remained unchanged after IRX-2 therapy. Significant changes occurred in numbers of circulating B cells and NKT cells, which decreased following IRX-2 therapy. The frequency of circulating Treg (CD4+CD25high) remained unaltered (e.g., 6.7?±?0.6% vs. 7.5?±?0.8%; means?±?SEM) as was the CD8+/Treg ratio (6.6 before and 6.7 after IRX-2 therapy). The mean absolute number of CD3+CD45RA+CCR7+ (na?ve) T cells was decreased after IRX-2 therapy but numbers of total memory (i.e., central and peripheral) and terminally differentiated T cells were unchanged.

Conclusions

IRX-2-mediated reductions in B and NKT cell numbers in the blood suggest a redistribution of these cells to tissues. A decrease in na?ve T cells implies their up-regulated differentiation to memory T cells. Unchanged Treg numbers after IRX-2 therapy indicate that IRX-2 does not expand this compartment, potentially benefiting anti-tumor immune responses.  相似文献   

13.
Previous studies determined that the CD8+ T-cell response elicited by recombinant adenovirus exhibited a protracted contraction phase that was associated with long-term presentation of antigen. To gain further insight into this process, a doxycycline-regulated adenovirus was constructed to enable controlled extinction of transgene expression in vivo. We investigated the impact of premature termination of transgene expression at various time points (day 3 to day 60) following immunization. When transgene expression was terminated before the maximum response had been attained, overall expansion was attenuated, yielding a small memory population. When transgene expression was terminated between day 13 and day 30, the memory population was not sustained, demonstrating that the early memory population was antigen dependent. Extinction of transgene expression at day 60 had no obvious impact on memory maintenance, indicating that maintenance of the memory population may ultimately become independent of transgene expression. Premature termination of antigen expression had significant but modest effects on the phenotype and cytokine profile of the memory population. These results offer new insights into the mechanisms of memory CD8+ T-cell maintenance following immunization with a recombinant adenovirus.Recombinant human adenovirus 5 (rHuAd5) vector vaccines have garnered considerable attention as platforms for eliciting CD8+ T-cell immunity due to their strong immunogenicity in numerous studies, including primate studies and preliminary human trials (30, 32, 53). While these vectors may not represent the optimal serotype for use in humans, due to the high prevalence of preexisting immunity, the robust immunogenicity of rHuAd5 in preclinical models merits further investigation, since the biological information derived from these studies will offer important insights that can be extended to other vaccine platforms.CD8+ T cells play an important role in host defense against tumors and viral infections. During the primary phase of the CD8+ T-cell response, the activated precursors undergo a rapid and dramatic expansion in cell number, followed by a period of contraction where 80 to 90% of the antigen-specific population dies off, leaving the remaining cells to constitute the memory population (44). CD8+ T cells mature over the course of the primary response and acquire the ability to produce gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and, to a lesser degree, interleukin 2 (IL-2). Memory T cells can be divided into central memory and effector memory T cells based on phenotype and anatomical location (44). These phenotypic differences have also been linked to functional differences; however, these relationships remain controversial (2, 16, 20, 46, 55).Various reports have revealed some unexpected qualities of the CD8+ T-cell response generated by intramuscular immunization with rHuAd5. The rHuAd5-induced CD8+ T-cell response exhibited a protracted contraction phase, and the memory population was composed primarily of effector and effector-memory cells (23, 38, 39, 41, 51). The phenotype of the rHuAd5-elicited CD8+ T-cell population was more consistent with the CD8+ T-cell population observed in persistent infections, such as polyomavirus (25), murine herpesvirus-68 (35), and murine cytomegalovirus (MCMV) (1) infections, than with that observed in acute infections, such as lymphocytic choriomeningitis virus (LCMV) (44), vaccinia virus (15), and influenza virus (24) infections. Further investigation demonstrated that, as in a persistent infection, antigen presentation persisted for a prolonged period following intramuscular immunization with rHuAd5, and transgene expression could persist at low levels for more than 1 year following infection (41, 51). These data suggest that the sustained effector phenotype may arise from prolonged, low-level transgene expression from the rHuAd5 vector, although this connection was not formally proven. It is difficult to fully appreciate the implications of these observations at this time, since chronic exposure to antigen is often associated with CD8+ T-cell dysfunction, yet rHuAd5 vectors have been used successfully to elicit protective immunity in many models of pathogen infection and tumor challenge (5, 54). Nevertheless, other reports have provided evidence that rHuAd5 vectors can, indeed, lead to dysfunctional CD8+ T-cell immunity (27, 36). Therefore, further investigation is necessary in order to properly assess the implications of the prolonged antigen expression following rHuAd5 immunization in terms of sustaining a functional memory CD8+ T-cell response.In the current report, we sought to determine the relationship between transgene expression and CD8+ T-cell maintenance and memory. To this end, we constructed an Ad vector with a doxycycline (DOX)-regulated expression cassette that would permit attenuation of gene expression at various times postinfection. Using this reagent, we addressed two key questions. (i) How does the duration of antigen expression affect the magnitude of primary CD8+ T-cell expansion? (ii) Is antigen expression required beyond the peak expansion to maintain the memory CD8+ T-cell population?  相似文献   

14.
15.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H2O2 on an antigen-specific CD8+ T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8+ T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8+ T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8+ T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8+ T cell pool. During chronic viral infection, increased antigen-specific CD8+ T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8+ T cell expansion, secondary memory generation, and immunopathology.  相似文献   

16.

Introduction

The present study was devised to understand the role of systemic indoleamine 2,3-dioxygenase (IDO) in the tolerance induction for orally tolerized mice in collagen-induced arthritis (CIA). We examined whether IDO-expressing dendritic cells (DCs) are involved in the generation of CD4+CD25+ regulatory T cells during the induction of oral tolerance in a murine CIA model.

Methods

Type II collagen was fed six times to DBA/1 mice beginning 2 weeks before immunization, and the effect on arthritis was assessed. To examine the IDO expression, the DCs of messenger RNA and protein were analyzed by RT-PCR and Flow cytometry. In addition, a proliferative response assay was also carried out to determine the suppressive effects of DCs through IDO. The ability of DCs expressing IDO to induce CD4+CD25+ T regulatory cells was examined.

Results

CD11c+ DCs in Peyer's patches from orally tolerized mice expressed a higher level of IDO than DCs from nontolerized CIA mice. IDO-expressing CD11c+ DCs were involved in the suppression of type II collagen-specific T-cell proliferation and in the downregulation of proinflammatory T helper 1 cytokine production. The suppressive effect of IDO-expressing CD11c+ DCs was mediated by Foxp3+CD4+CD25+ regulatory T cells.

Conclusion

Our data suggest that tolerogenic CD11c+ DCs are closely linked with the induction of oral tolerance through an IDO-dependent mechanism and that this pathway may provide a new therapeutic modality to treat autoimmune arthritis.  相似文献   

17.

Background

The use of CD19 chimeric antigen receptor (CAR) T cells to treat B-cell malignancies has proven beneficial. Several groups use serum to produce CD19 CAR T cells. Today, ready-to-use serum-free media that require no addition of serum are commercially available. Therefore, it becomes important to evaluate the production of CD19 CAR T cells with and without the addition of serum.

Methods

T cells from buffy coats were cultured in AIM-V and TexMACS (TM) supplemented with 5% human serum (A5% and TM5%, respectively), and in TM without serum. Cells were activated with OKT3 and expanded in interleukin (IL)-2. Viral transduction was performed in RetroNectin-coated plates using the spinoculation method. CD19 CAR T cells were tested for their viability, expansion, transduction efficacy, phenotype and cytotoxicity.

Results

CD19 CAR T cells expanded in A5% and TM5% showed significantly better viability and higher fold expansion than cells expanded in TM. TM promoted the expansion of CD8+ T cells and effector phenotype of CD19 CAR T cells. The transduction efficacy and the cytotoxic function were comparable between the different media. Higher CD107a+ cells were detected in TM and TM5%, whereas higher IL-2+ and IL-17+ cells were detected in A5%. CD19 CAR exhibited co-expression of inhibitory receptors such as TIM-3+LAG-3+ and/or TIM-3+PD-1+.

Conclusion

Our results indicate that serum supplementation promotes better CD19 CAR T-cell expansion and viability in vitro. CD19 CAR T cells produced in TM medium showed lower CD4/CD8 ratio, which warrants further evaluation in clinical settings. Overall, the choice of culture medium impacts CD19 CAR T-cell end product.  相似文献   

18.
Pseudorabies virus (PRV; suid herpesvirus 1) infection causes heavy economic losses in the pig industry. Therefore, vaccination with live attenuated viruses is practiced in many countries. This vaccination was demonstrated to induce extrathymic virus-specific memory CD4+CD8+ T lymphocytes. Due to their major histocompatibility complex (MHC) class II-restricted proliferation, it is generally believed that these T lymphocytes function as memory T-helper cells. To directly prove this hypothesis, 15-amino-acid, overlapping peptides of the viral glycoprotein gC were used for screening in proliferation assays with peripheral blood mononuclear cells of vaccinated d/d haplotype inbred pigs. In these experiments, two naturally processed T-cell epitopes (T1 and T2) which are MHC class II restricted were identified. It was shown that extrathymic CD4+CD8+ T cells are the T-lymphocyte subpopulation that responds to epitope T2. In addition, we were able to show that cytokine secretion can be induced in these T cells through recall with inactivated PRV and demonstrated that activated PRV-primed CD4+CD8+ T cells are able to induce PRV-specific immunoglobulin synthesis by PRV-primed, resting B cells. Taken together, these results demonstrate that the glycoprotein gC takes part in the priming of humoral anti-PRV memory responses. The experiments identified the first T-cell epitopes so far known to induce the generation of virus-specific CD4+CD8+ memory T lymphocytes and showed that CD4+CD8+ T cells are memory T-helper cells. Therefore, this study describes the generation of virus-specific CD4+CD8+ T cells, which is observed during vaccination, as a part of the potent humoral anti-PRV memory response induced by the vaccine.Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, is the causative agent of Aujeszky’s disease. This disease is lethal to young pigs and causes important economic losses (52). Therefore, vaccination of pigs is practiced in many countries.Several humoral immune system effector mechanisms are involved in the protection of pigs from PRV infection. Virus-neutralizing antibodies, antibodies mediating antibody-dependent cell-mediated cytotoxicity, and antibodies mediating complement-mediated lysis of PRV-infected target cells have been demonstrated (22, 23, 53, 54). The main targets of this humoral immune response were shown to be the viral glycoproteins (3, 45), and passive immunization with monoclonal antibodies (MAbs) against gB, gC, and gD protects pigs from a lethal challenge (20, 49).The protection conferred through cell-mediated immunity is poorly understood. An increase in major histocompatibility complex (MHC)-unrestricted cell-mediated cytotoxicity against uninfected and PRV-infected cells has been detected after infection or vaccination of pigs with PRV (16, 53, 54), and specific cellular immune responses to PRV infections could be demonstrated by stimulation of proliferation and lymphokine secretion of porcine PRV-immune lymphocytes (10, 17, 42, 43, 51) as well as by the detection of PRV-specific cytotoxic lymphocytes (21, 56).There are some difficulties in defining more precisely the impact of cell-mediated immune effector mechanisms to protection from PRV-infection and their interplay with the observed humoral immune response. Considerably fewer porcine than human or mouse differentiation markers are available (34). In addition, the immune system of swine differs considerably from that of humans and mice. The pig has a substantial number of CD4CD8 T lymphocytes in the peripheral blood (4, 6, 12, 36, 39). In young animals, this subpopulation of T lymphocytes comprises up to 60% of the T lymphocytes and contains mainly γδ T lymphocytes. The pig is also the only species so far known to contain a substantial number of resting extrathymic CD4+CD8+ T lymphocytes (28, 36, 39). This T-lymphocyte population shows morphologically the phenotype of mature T lymphocytes (40) and increases with age to up to 60% of peripheral T lymphocytes (29, 35, 39, 55). Further, it was demonstrated that CD4+CD8+ T lymphocytes comprise memory T cells which proliferate upon stimulation with recall antigen (43, 55). Since the observed proliferative response was shown to be MHC class II-restricted, it was speculated that the porcine CD4+CD8+ T-cell subset contains memory T-helper lymphocytes (43). However, the ability of these T lymphocytes to secrete cytokines or to provide help to B cells has so far not been demonstrated.To gain a better understanding of immune effector mechanisms conferring protection from PRV infection, the function of these unusual extrathymic T-lymphocyte subsets has to be elucidated. In the present study, we identified two T-cell epitopes on glycoprotein gC which are primed during vaccination of d/d haplotype inbred pigs (41) against PRV and demonstrated that MHC class II-restricted, peripheral CD4+CD8+ memory T lymphocytes are the responding T lymphocytes. We were further able to show that PRV-specific, extrathymic CD4+CD8+ T lymphocytes are able to secrete cytokines and have the capacity to stimulate the secretion of PRV-specific immunoglobulins (Ig) by PRV-primed B cells. These results demonstrate that porcine CD4+CD8+ T lymphocytes can function as memory T-helper cells and can direct humoral anti-PRV memory responses.  相似文献   

19.

Background

T cell-mediated immunity in elderly people is compromised in ways reflected in the composition of the peripheral T cell pool. The advent of polychromatic flow cytometry has made analysis of cell subsets feasible in unprecedented detail.

Results

Here we document shifts in subset distribution within naïve (N), central memory (CM) and effector memory (EM) cells defined by CD45RA and CCR7 expression in the elderly, additionally using the costimulatory receptors CD27 and CD28, as well as the coinhibitory receptors CD57 and KLRG-1, to further dissect these. Although differences between young and old were more marked in CD8 than in CD4 cells, a similar overall pattern prevailed in both. Thus, the use of all these markers together, and inclusion of assays of proliferation and cytokine secretion, may enable the construction of a differentiation scheme applicable to CD4 as well as CD8 cells, with the model (based on Romero et al.) suggesting the progression N→CM→EM1→EM2→pE1→pE2→EM4→EM3→E end-stage non-proliferative effector cells.

Conclusion

Overall, the results suggest that both differences in subset distribution and differences between subsets are responsible for age-related changes in CD8 cells but that differences within rather than between subsets are more prominent for CD4 cells.  相似文献   

20.

Introduction

IL-10 is a very important anti-inflammatory cytokine. However, the role of this cytokine in T cells in the pathogenesis of collagen-induced arthritis is unclear. The purpose of this study was to define the role of IL-10 signaling in T cells in the pathogenesis of collagen-induced arthritis.

Methods

IL-10 receptor dominant-negative transgenic (Tg) and control mice were immunized with bovine type II collagen to induce arthritis. The severity of arthritis was monitored and examined histologically. T-cell activation and cytokine production were analyzed using flow cytometry. T-cell proliferation was examined by [3H]thymidine incorporation. Antigen-specific antibodies in serum were measured by ELISA. Foxp3 expression in CD4+ regulatory T cells (Tregs) was determined by intracellular staining or Foxp3-RFP reporter mice. The suppressive function of Foxp3+CD4+ Tregs was determined in vitro by performing a T-cell proliferation assay. The level of IL-17 mRNA in joints was measured by real-time PCR. A two-tailed nonparametric paired test (Wilcoxon signed-rank test) was used to calculate the arthritis and histological scores. Student's paired or unpaired t-test was used for all other statistical analyses (InStat version 2.03 software; GraphPad Software, San Diego, CA, USA).

Results

Blocking IL-10 signaling in T cells rendered mice, especially female mice, highly susceptible to collagen-induced arthritis. T-cell activation and proliferation were enhanced and produced more IFN-γ. The suppressive function of CD4+Foxp3+ regulatory T cells was significantly impaired in Tg mice because of the reduced ability of Tregs from Tg mice to maintain their levels of Foxp3. This was further confirmed by transferring Foxp3-RFP cells from Tg or wild-type (Wt) mice into a congenic Wt host. The higher level of IL-17 mRNA was detected in inflammatory joints of Tg mice, probably due to the recruitment of IL-17+γδ T cells into the arthritic joints.

Conclusion

IL-10 signaling in T cells is critical for dampening the pathogenesis of collagen-induced arthritis by maintaining the function of Tregs and the recruitment of IL-17+γδ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号