首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol is a major by-product of the biodiesel industry. In this study we report on the metabolic networks involved in its transformation into pyruvate, phosphoenolpyruvate (PEP) and ATP. When the nutritionally-versatile Pseudomonas fluorescens was exposed to hydrogen peroxide (H2O2) in a mineral medium with glycerol as the sole carbon source, the microbe reconfigured its metabolism to generate adenosine triphosphate (ATP) primarily via substrate-level phosphorylation (SLP). This alternative ATP-producing stratagem resulted in the synthesis of copious amounts of PEP and pyruvate. The production of these metabolites was mediated via the enhanced activities of such enzymes as pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC). The high energy PEP was subsequently converted into ATP with the aid of pyruvate phosphate dikinase (PPDK), phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) with the concomitant formation of pyruvate. The participation of the phospho-transfer enzymes like adenylate kinase (AK) and acetate kinase (ACK) ensured the efficiency of this O2-independent energy-generating machinery. The increased activity of glycerol dehydrogenase (GDH) in the stressed bacteria provided the necessary precursors to fuel this process. This H2O2-induced anaerobic life-style fortuitously evokes metabolic networks to an effective pathway that can be harnessed into the synthesis of ATP, PEP and pyruvate. The bioconversion of glycerol to pyruvate will offer interesting economic benefit.  相似文献   

2.
A heat-stable, soluble component of brown adipose tissue from newborn rats was found to be readily phosphorylated by protein kinase of the same subcellular fraction. The concentration of this component in brown fat decreased with the age of the animals. A boiled crude microsomal preparation from rat liver was also phosphorylated by brown fat protein kinase. The GTP-linked phosphorylation of the endogenous heat-stable protein was not stimulated by ATP (in contrast to phosphorylation of histone). The maximum velocity of phosphorylation achieved with GTP was about 2.5 times higher than that with ATP as nucleotide substrate. This difference was not due to ATPase activity in the assay. With histone as the protein acceptor both activities were the same. The affinity of protein kinase(s) for ATP was lower with the endogenous heat-stable brown-fat protein and with boiled microsomes (Km of 0.21 mM and 0.17 mM, respectively) than with histone (Km of 0.05 M). No detecable ATPase activity was present in either acceptor protein. It is concluded that the 100 000 × g supernatant fraction from brown fat of infant rats contains two protein kinase activities. One preferentially uses ATP and histone as substrates and the other uses endogenous heat-stable soluble proteins and either ATP or GTP.  相似文献   

3.
《FEBS letters》1985,184(1):100-103
Liposomes containing the hydrogenase complex and the fumarate reductase complex isolated from Wolinella (formerly Vibrio) succinogenes, together with vitamin K1 catalyzed the electron transport from H2 to fumarate. With the fumarate reductase complex present in excess the activity of electron transport was close to that of the hydrogenase complex. Liposomes containing an ATP synthase in addition to the electron transport components catalyzed the phosphorylation of ADP driven by the electron transport.  相似文献   

4.

Background

It is well-known that elevated amounts of nitric oxide and other reactive nitrogen species (RNS) impact negatively on the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. These perturbations severely compromise O2-dependent energy production. While bacteria are known to adapt to RNS, a key tool employed by macrophages to combat infections, the exact mechanisms are unknown.

Methods

The bacterium was cultured in a defined mineral medium and cell-free extracts obtained at the same growth phase were utilized for various biochemical studies Blue native polyacrylamide gel electrophoresis followed by in-gel activity assays, high performance liquid chromatography and co-immunoprecipitaton are applied to investigate the effects of RNS on the model microbe Pseudomonas fluorescens.

Results

Citrate is channeled away from the tricarboxylic acid cycle using a novel metabolon consisting of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK). This metabolic engine comprising three disparate enzymes appears to transiently assemble as a supercomplex aimed at ATP synthesis. The up-regulation in the activities of adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK) ensured the efficacy of this ATP-making machine.

Conclusion

Microbes may escape the effects of nitrosative stress by re-engineering metabolic networks in order to generate and store ATP anaerobically when the electron transport chain is defective.

General significance

The molecular configuration described herein provides further understanding of how metabolism plays a key role in the adaptation to nitrosative stress and reveals novel targets that will inform the development of antimicrobial agents to counter RNS-resistant pathogens.  相似文献   

5.
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions.  相似文献   

6.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

7.
Thymidine kinase is present in the cytoplasm (outside mitochondria) of Tetrahymena pyriformis. Previous workers have been unable to find a specific thymidine kinase activity in this organism. The cytoplasm of Tetrahymena contained a thymidine phosphorylating activity which was ATP dependent, was stimulated by Mg2+, and was inhibited by dTTP. This activity was also partly inhibited by dCTP. Although the mitochondrial fraction also exhibited ATP-dependent phosphorylation, it is not stimulated by Mg2+ and not significantly inhibited by dTTP. Nucleoside phosphotransferase activity is detectable both in cytoplasmic and mitochondrial fractions, although it is not clear whether they represent separate enzymes. Nucleoside phosphotransferase activity is inhibited both by NaF and by ATP. Thymidine kinase and nucleoside phosphotransferase activities were separated by polyacrylamide gel electrophoresis, establishing the presence of both enzymes in this organism. Both crude mitochondrial lysate and postmitochondrial supernatant samples exhibited similar gel electrophoretic patterns for thymidine kinase and nucleoside phosphotransferase activities. The former, however, exhibited a relatively small peak of thymidine kinase migrating at the same rate as that of the postmitochondrial supernatant. A separate peak of thymidine kinase was not found in the mitochondria of Tetrahymena.  相似文献   

8.
  1. Cells of Vibrio succinogenes, treated with EDTA at pH 8, catalyze the phosphorylation of their endogenous ADP and AMP as a function of the electron transport from formate to fumarate. The P/fumarate ratio obtained from the initial velocity of the phosphorylation on initiation of the electron transport and from the activity of fumarate reduction in the steady state was 0.90. The phosphorylation was prevented by 10μmol/g protein carbonylcyanide-3-chlorophenylhydrazone.
  2. The esterification of external phosphate in the presence of ADP, hexokinase and glucose is catalysed by a membrane preparation of V. succinogenes in the steady state of fumarate reduction by H2. The phosphorylation was fully abolished by either 5μmol/g protein carbonylcyanide-4-trifluoromethoxyphenylhydrazone or 30μmol/g protein carbonylcyanide-3-chlorphenylhydrazone. Phosphorylation was blocked also by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent membrane bound ATP synthase, and by low concentrations of the inhibitors of electron transport 2-(n-nonyl)-4-hydroxyquinoline-N-oxide or 4-chloromercuriphenylsulfonate.
  3. The P/fumarate ratios, measured with the membrane preparation, were found to increase with progressive inhibition of the electron transport from hydrogen to fumarate by means of 4-chloromercuriphenylsulfonate. The extrapolated ratio at vanishing electron transport activity was 0.47.
  4. About 50% of the membrane preparation was found to consist of inverted vesicles with the hydrogenase and formate dehydrogenase oriented to the inside. The residual part is considered as being incapable of performing energy transduction. The extrapolated P/fumarate ratio valid for the inverted vesicles was 0.94.
  相似文献   

9.
The activities of enzymes involved in the consecutive phosphorylation of thymidine were revealed in the gonad extracts of marine invertebrates. Along with thymidine kinase activity, thymidilate kinase activity was revealed in all the studied species; however, the specific activities of nucleoside and nucleotide kinases varied in different species of mollusks, sea stars and sea urchins. Thymidine and thymidilate kinases were isolated from the gonads of the scallop Mizuhopecten yessoensis and some of their enzymat properties were studied. The thymidine kinase of M. yessoensis catalyzed the phosphorylation of thymidine and deoxycytidine at a lesser rate, but didn’s use purine ribo-and deoxyribonucleosides or pyrimidine ribonucleosides as phosphate acceptors. The thymidilate kinase carried out both TMP and dCMP phosphorylation. As well as ATP, the enzymes of M. yessoensis were also able to use dATP, dGTP, GTP, UTP and CTP as donors of phosphate groups. The thymidine kinase activity was inhibited by TMP, TTP and dCTP.  相似文献   

10.
Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily1-5, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya6. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila7-14. An acetate kinase which can only utilize PPi but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus15,16.In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann17-20, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD+ by the enzymes pyruvate kinase and lactate dehydrogenase21,22, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine23. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP+ to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase24.Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PPi.  相似文献   

11.
12.
The intestine has a high requirement for ATP to support its integrity, function and health, and thus, energy deficits in the intestinal mucosa may play a critical role in intestinal injury. Aspartate (Asp) is one of the major sources of ATP in mammalian enterocytes via mitochondrial oxidation. We hypothesized that dietary supplementation of Asp could attenuate lipopolysaccharide (LPS)-induced intestinal damage via modulation of intestinal energy status. Twenty-four weanling piglets were allotted to one of four treatments: (1) nonchallenged control, (2) LPS-challenged control, (3) LPS+0.5% Asp treatment, and (4) LPS+1.0% Asp treatment. On day 19, pigs were injected with saline or LPS. At 24 h postinjection, pigs were killed and intestinal samples were obtained. Asp attenuated LPS-induced intestinal damage indicated by greater villus height and villus height/crypt depth ratio as well as higher RNA/DNA and protein/DNA ratios. Asp improved intestinal function indicated by increased intestinal mucosal disaccharidase activities. Asp also improved intestinal energy status indicated by increased ATP, ADP and total adenine nucleotide contents, adenylate energy charge and decreased AMP/ATP ratio. In addition, Asp increased the activities of tricarboxylic acid cycle key enzymes including citrate synthase, isocitrate dehydrogenase and alpha-oxoglutarate dehydrogenase complex. Moreover, Asp down-regulated mRNA expression of intestinal AMP-activated protein kinase α1 (AMPKα1), AMPKα2, silent information regulator 1 (SIRT1) and peroxisome proliferator–activated receptor gamma coactivator-1α (PGC1α) and decreased intestinal AMPKα phosphorylation. These results indicate that Asp may alleviate LPS-induced intestinal damage and improve intestinal energy status.  相似文献   

13.
Kinase(s) in brush border membranes, isolated from rabbit renal proximal tubules, phosphorylated proteins intrinsic to the membrane and exogenous proteins. cAMP stimulated phosphorylation of histone; phosphorylation of protamine was cAMP independent. cAMP-dependent increases in phosphorylation of endogenous membrane protein were small, but highly reproducible. Most of the 32P incorporated into membranes represented phosphorylation of serine residues, with phosphorylthreonine comprising a minor component. cAMP did not alter the electrophoretic pattern of 32P-labeled membrane polypeptides. The small cAMP-dependent phosphorylation of brush border membrane proteins was not due to membrane phosphodiesterase or adenylate cyclase activities. Considerable cAMP was found “endogenously” bound to the membranes as prepared. However, this did not result in preactivation of the kinase since activity was not inhibited by a heat-stable protein inhibitor of cAMP-dependent protein kinases. With intrinsic membrane protein as phosphate acceptor, the relationship between rate of phosphorylation and ATP concentration appeared to follow Michaelis-Menton kinetics. With histone the relationship was complex. cAMP did not affect the apparent Km for histone. One-half maximal stimulation of the rate of histone phosphorylation was obtained with 7 × 10?8m cAMP. The Ka values for dibutyryl cAMP, cIMP, and cGMP were one to two orders of magnitude greater. Treatment of brush border membranes with detergent greatly increased the dependency of histone phosphorylation on cAMP. Phosphorylations of intrinsic membrane protein and histone were nonlinear with time, due in part to the lability of the protein kinase, the hydrolysis of ATP, and minimally to the presence of phosphoprotein phosphatase in the border membrane. The membrane phosphoprotein phosphatase was unaffected by cyclic nucleotides. Protein kinase activity was also found in cytosolic and crude particulate fractions of the renal cortex. Activity was enriched in the brush border membrane relative to that in the crude membrane preparation. The kinase activities in the different loci were distinct both in relative activities toward different substrates and in responsiveness to cAMP.  相似文献   

14.
100 000 × g soluble extracts from interscapular brown adipose tissue catalyzed the transfer of the terminal phosphoryl group from GTP to histone. Maximal velocity was achieved only with both cyclic AMP and ATP present. The cyclic AMP dose-response curve was the same as for the ATP-utilizing enzyme, with maximum stimulation at 0.5 μM. ATP (1–100 μM) increased the rate of histone phosphorylation with GTP as the radioactive substrate. Higher concentrations had a dilution effect similar to that of GTP on the ATP-utilizing enzyme. Similar effects were observed with ADP and AMP. The apparent Km values for histone were the same with both GTP and ATP as nucleotide substrates. The effects of pH, purified beef muscle kinase inhibitor and of NaCl were also the same. Maximum velocities of histone phosphorylation from ATP and those from GTP were almost the same in brown fat of all age groups tested. Separated on histone-Sepharose, the GTP-utilizing activity was absolutely dependent on the re-addition of the ATP-utilizing enzyme (a linear relationship with a slope of approx. 0.95). An extremely active nucleotide phosphotransferase activity was found in the same subcellular fraction. The rate of equilibration of the γ-32 P between GTP and ATP could account for all the histone phosphorylation with [γ-32 P] GTP. It is concluded that, in spite of the presence of nucleotide phosphotransferase and ATP-protein kinase activities, a direct transfer from GTP to a protein substrate cannot be excluded. Also, histone may not be the natural protein acceptor for GTP-linked phosphorylation.  相似文献   

15.
Arabidopsis thaliana is a plant species that accumulates high levels of organic acids and uses them as carbon, energy and reducing power sources. Among the enzymes that metabolize these compounds, one of the most important ones is malic enzyme (ME). A. thaliana contains four malic enzymes (NADP-ME 1–4) to catalyze the reversible oxidative decarboxylation of malate in the presence of NADP. NADP-ME2 is the only one located in the cell cytosol of all Arabidopsis organs providing most of the total NADP-ME activity. In the present work, the regulation of this key enzyme by fumarate was investigated by kinetic assays, structural analysis and a site-directed mutagenesis approach. The final effect of this metabolite on NADP-ME2 forward activity not only depends on fumarate and substrate concentrations but also on the pH of the reaction medium. Fumarate produced an increase in NADP-ME2 activity by binding to an allosteric site. However at higher concentrations, fumarate caused a competitive inhibition, excluding the substrate malate from binding to the active site. The characterization of ME2-R115A mutant, which is not activated by fumarate, confirms this hypothesis. In addition, the reverse reaction (reductive carboxylation of pyruvate) is also modulated by fumarate, but in a different way. The results indicate pH-dependence of the fumarate modulation with opposite behavior on the two activities analyzed. Thereby, the coordinated action of fumarate over the direct and reverse reactions would allow a precise and specific modulation of the metabolic flux through this enzyme, leading to the synthesis or degradation of C4 compounds under certain conditions. Thus, the physiological context might be exerting an accurate control of ME activity in planta, through changes in metabolite and substrate concentrations and cytosolic pH.  相似文献   

16.
Mitochondrial dysfunction is often associated with aging and neurodegeneration. c-Jun-N-terminal kinase (JNK) phosphorylation and its translocation to mitochondria increased as a function of age in rat brain. This was associated with a decrease of pyruvate dehydrogenase (PDH) activity upon phosphorylation of the E1α subunit of PDH. Phosphorylation of PDH is likely mediated by PDH kinase, the protein levels and activity of which increased with age. ATP levels were diminished, whereas lactic acid levels increased, thus indicating a shift toward anaerobic glycolysis. The energy transduction deficit due to impairment of PDH activity during aging may be associated with JNK signaling.  相似文献   

17.
Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca2+, reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.  相似文献   

18.
19.
Sarcoplasmic reticulum, isolated from canine cardiac muscle, was phosphorylated in the presence of exogenous cAMP-dependent protein kinase or calmodulin. This phosphorylation has been shown previously to activate sarcoplasmic reticulum calcium uptake (LePeuch et al. (1979) Biochemistry18, 5150–5157). Calmodulin appeared to activate an endogenous protein kinase present in sarcoplasmic reticulum membranes. The incorporation of phosphate increased with time. However, once all the ATP was consumed, the level of phosphorylated protein started to decrease due to the action of an endogenous protein phosphatase. Dephosphorylation occurred even when the level of phosphorylated sarcoplasmic reticulum remained constant at high ATP concentrations. The phosphorylation of sarcoplasmic reticulum in the presence of calmodulin, increased as the pH was increased from pH 5.5 to 8.5. This phosphorylation was only inhibited by KCl concentrations greater than 100 mm. The apparent Km of cAMP-dependent protein kinase for ATP was 5.2 ± 0.2 × 10?5m, and of the calmodulin-dependent protein kinase for ATP was 3.67 ± 0.29 × 10?5m. Phosphorylation was maximally activated by 5–10 mm MgCl2; higher MgCl2 concentrations inhibited this phosphorylation. Thus the calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum could be maximally activated at sarcoplasmic concentrations of K+, Mg2+, and ATP. The calmodulindependent phosphorylation was half-maximally activated at Ca2+ concentrations that were significantly greater than those required to promote the formation of the sarcoplasmic reticulum Ca-activated ATPase phosphoprotein intermediate. Thus at sarcoplasmic Ca2+ concentrations that might be expected during systole, the sarcoplasmic reticulum calcium pump would be fully activated before any significant calmodul-independent sarcoplasmic reticulum phosphorylation occurred. However, under certain pathological conditions when the sarcoplasmic Ca2+ becomes elevated (e.g., in ischemia) the kinase could be activated so that the sarcoplasmic reticulum would be phosphorylated and calcium uptake augmented. Thus, the calmodulin-dependent protein kinase may only function when the heart needs to rescue itself from a possibly fatal calcium overload.  相似文献   

20.
Protein kinase activity was detected in osmotically lysed mitochondria isolated from etiolated seedlings of corn, pea, soybean, and wheat, as well as from potato tubers. Ther kinase(s) phosphorylated both endogenous polypeptides and exogenous, nonmitochondrial proteins when supplied with ATP and Mg2+. Eight to fifteen endogenous mitochondrial polypeptides were phosphorylated. The major mitochondrial polypeptide labeled in all species migrated during denaturing electrophoresis with an apparent monomeric molecular weight of 47,000. Incorporation of phosphate into endogenous proteins appeared to be biphasic, being most rapid during the first 1 to 2 minutes but slower thereafter. The kinase activity was greatest at neutral and alkaline pH values and utilized ATP with a Km of approximately 200 micromolar. The kinase was markedly inhibited by CaCl2 but was essentially unaffected by NaF, calmodulin, oligomycin, or cAMP. These data suggest that plant mitochondrial protein phosphorylation may be similar to protein phosphorylation in animal mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号