首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methionine metabolism in mammals. Adaptation to methionine excess   总被引:15,自引:0,他引:15  
We conducted a systematic evaluation of the effects of increasing levels of dietary methionine on the metabolites and enzymes of methionine metabolism in rat liver. Significant decreases in hepatic concentrations of betaine and serine occurred when the dietary methionine was raised from 0.3 to 1.0%. We observed increased concentrations of S-adenosylhomocysteine in livers of rats fed 1.5% methionine and of S-adenosylmethionine and methionine only when the diet contained 3.0% methionine. Methionine supplementation resulted in decreased hepatic levels of methyltetrahydrofolate-homocysteine methyltransferase and increased levels of methionine adenosyltransferase, betaine-homocysteine methyltransferase, and cystathionine synthase. We used these data to simulate the regulatory locus formed by the enzymes which metabolize homocysteine in livers of rats fed 0.3% methionine, 1.5% methionine, and 3.0% methionine. In comparison to the model for the 0.3% methionine diet group, the model for the 3.0% methionine animals demonstrates a 12-fold increase in the synthesis of cystathionine, a 150% increase in flow through the betaine reaction, and a 550% increase in total metabolism of homocysteine. The concentrations of substrates and other metabolites are significant determinants of this apparent adaptation.  相似文献   

2.
Many enzymes in one-carbon metabolism (OCM) are up- or down-regulated by the sex hormones which vary diurnally and throughout the menstrual cycle. During pregnancy, estradiol and progesterone levels increase tremendously to modulate physiological changes in the reproductive system. In this work, we extend and improve an existing mathematical model of hepatic OCM to understand the dynamic metabolic changes that happen during the menstrual cycle and pregnancy due to estradiol variation. In particular, we add the polyamine drain on S-adenosyl methionine and the direct effects of estradiol on the enzymes cystathionine β-synthase (CBS), thymidylate synthase (TS), and dihydrofolate reductase (DHFR). We show that the homocysteine concentration varies inversely with estradiol concentration, discuss the fluctuations in 14 other one-carbon metabolites and velocities throughout the menstrual cycle, and draw comparisons with the literature. We then use the model to study the effects of vitamin B12, vitamin B6, and folate deficiencies and explain why homocysteine is not a good biomarker for vitamin deficiencies. Additionally, we compute homocysteine throughout pregnancy, and compare the results with experimental data. Our mathematical model explains how numerous homeostatic mechanisms in OCM function and provides new insights into how homocysteine and its deleterious effects are influenced by estradiol. The mathematical model can be used by others for further in silico experiments on changes in one-carbon metabolism during the menstrual cycle and pregnancy.  相似文献   

3.
A cell extract of an extremely thermophilic bacterium, Thermus thermophilus HB8, cultured in a synthetic medium catalyzed cystathionine gamma-synthesis with O-acetyl-L-homoserine and L-cysteine as substrates but not beta-synthesis with DL-homocysteine and L-serine (or O-acetyl-L-serine). The amounts of synthesized enzymes metabolizing sulfur-containing amino acids were estimated by determining their catalytic activities in cell extracts. The syntheses of cystathionine beta-lyase (EC 4.4.1.8) and O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) were markedly repressed by L-methionine supplemented to the medium. L-Cysteine and glutathione, both at 0.5 mM, added to the medium as the sole sulfur source repressed the synthesis of O-acetylserine sulfhydrylase by 55 and 73%, respectively, confirming that this enzyme functions as a cysteine synthase. Methionine employed at 1 to 5 mM in the same way derepressed the synthesis of O-acetylserine sulfhydrylase 2.1- to 2.5-fold. A method for assaying a low concentration of sulfide (0.01 to 0.05 mM) liberated from homocysteine by determining cysteine synthesized with it in the presence of excess amounts of O-acetylserine and a purified preparation of the sulfhydrylase was established. The extract of cells catalyzed the homocysteine gamma-lyase reaction, with a specific activity of 5 to 7 nmol/min/mg of protein, but not the methionine gamma-lyase reaction. These results suggested that cysteine was also synthesized under the conditions employed by the catalysis of O-acetylserine sulfhydrylase using sulfur of homocysteine derived from methionine. Methionine inhibited O-acetylserine sulfhydrylase markedly. The effects of sulfur sources added to the medium on the synthesis of O-acetylhomoserine sulfhydrylase and the inhibition of the enzyme activity by methionine were mostly understood by assuming that the organism has two proteins having O-acetylhomoserine sulfhydrylase activity, one of which is cystathionine gamma-synthase. Although it has been reported that homocysteine is directly synthesized in T. thermophilus HB27 by the catalysis of O-acetylhomoserine sulfhydrylase on the basis of genetic studies (T. Kosuge, D. Gao, and T. Hoshino, J. Biosci. Bioeng. 90:271-279, 2000), the results obtained in this study for the behaviors of related enzymes indicate that sulfur is first incorporated into cysteine and then transferred to homocysteine via cystathionine in T. thermophilus HB8.  相似文献   

4.
Hyperhomocysteinemia in humans is associated with genetic variants of several enzymes of folate and one-carbon metabolism and deficiencies of folate and vitamins B12 and B6. In each case, hyperhomocysteinemia might be caused by diminished folate-dependent homocysteine remethylation, but this has not been confirmed in vivo. Because published stable isotopic tracer approaches cannot distinguish folate-dependent from folate-independent remethylation, we developed a dual-tracer procedure in which a [U-13C5]-methionine tracer is used in conjunction with a [3-13C]serine tracer to simultaneously measure rates of total and folate-dependent homocysteine remethylation. In young female subjects, plasma [U-13C4]homocysteine enrichment, a surrogate measure of intracellular [U-13C5]methionine enrichment, reached approximately 90% of the plasma [U-13C5]methionine enrichment. Methionine-methyl and -carboxyl group fluxes were in the range of previous reports (approximately 25 and approximately 17 micromol.kg(-1).h(-1), respectively). However, the rate of overall homocysteine remethylation (approximately 8 micromol.kg(-1).h(-1)) was twice that of previous reports, which suggests a larger role for homocysteine remethylation in methionine metabolism than previously thought. By use of estimates of intracellular [3-13C]serine enrichment based on a conservative correction of plasma [3-13C]serine enrichment, serine was calculated to contribute approximately 100% of the methyl groups used for total body homocysteine remethylation under the conditions of this protocol. This contribution represented only a small fraction (approximately 2.8%) of total serine flux. Our dual-tracer procedure is well suited to measure the effects of nutrient deficiencies, genetic polymorphisms, and other metabolic perturbations on homocysteine synthesis and total and folate-dependent homocysteine remethylation.  相似文献   

5.
It is known that reactive oxygen species can oxidize methionine residues in proteins in a non-stereospecific manner, and cells have mechanisms to reverse this damage. MsrA and MsrB are members of the methionine sulfoxide family of enzymes that specifically reduce the S and R forms, respectively, of methionine sulfoxide in proteins. However, in Escherichia coli the level of MsrB activity is very low which suggested that there may be other enzymes capable of reducing the R epimer of methionine sulfoxide in proteins. Employing a msrA/B double mutant, a new peptide methionine sulfoxide reductase activity has been found associated with membrane vesicles from E. coli. Both the R and S forms of N-acetylmethionine sulfoxide, D-ala-met(o)-enkephalin and methionine sulfoxide, are reduced by this membrane associated activity. The reaction requires NADPH and may explain, in part, how the R form of methionine sulfoxide in proteins is reduced in E. coli. In addition, a new soluble Msr activity was also detected in the soluble extracts of the double mutant that specifically reduces the S epimer of met(o) in proteins.  相似文献   

6.
The hepatic activity of betaine-homocysteine methyltransferase is a complex function of the content of methionine in the diet. Enzyme levels are lower in the livers of rats fed a 0.3% methionine diet than in livers of animals maintained on either methionine-free or excessivemethionine (1.0%) rations. The finding that activities are increased at both extremes of the spectrum of dietary methionine intake suggests the possibility that the betaine-homocysteine methyltransferase reaction may function both to maintain tissue concentrations of methionine when intake of this amino acid is limited and to remove homocysteine when methionine intake is excessive.  相似文献   

7.
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the K(m) lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins.  相似文献   

8.
A mathematical model is developed for the folate cycle based on standard biochemical kinetics. We use the model to provide new insights into several different mechanisms of folate homeostasis. The model reproduces the known pool sizes of folate substrates and the fluxes through each of the loops of the folate cycle and has the qualitative behavior observed in a variety of experimental studies. Vitamin B(12) deficiency, modeled as a reduction in the V(max) of the methionine synthase reaction, results in a secondary folate deficiency via the accumulation of folate as 5-methyltetrahydrofolate (the "methyl trap"). One form of homeostasis is revealed by the fact that a 100-fold up-regulation of thymidylate synthase and dihydrofolate reductase (known to occur at the G(1)/S transition) dramatically increases pyrimidine production without affecting the other reactions of the folate cycle. The model also predicts that an almost total inhibition of dihydrofolate reductase is required to significantly inhibit the thymidylate synthase reaction, consistent with experimental and clinical studies on the effects of methotrexate. Sensitivity to variation in enzymatic parameters tends to be local in the cycle and inversely proportional to the number of reactions that interconvert two folate substrates. Another form of homeostasis is a consequence of the nonenzymatic binding of folate substrates to folate enzymes. Without folate binding, the velocities of the reactions decrease approximately linearly as total folate is decreased. In the presence of folate binding and allosteric inhibition, the velocities show a remarkable constancy as total folate is decreased.  相似文献   

9.
10.
Homocysteine   总被引:7,自引:0,他引:7  
Homocysteine does not occur in the diet but it is an essential intermediate in normal mammalian metabolism of methionine. Each compound, methionine or homocysteine, is the precursor of the other. Similarly, the synthesis of one is the mechanism for the detoxification of the other. The ubiquitous methionine cycle is the metabolic basis for this relationship. In some tissues the transsulfuration pathway diverts homocysteine from the cycle and provides a means for the synthesis of cysteine and its derivatives. Methionine, (or homocysteine) metabolism is regulated by the disposition of homocysteine between these competing sequences. Both pathways require vitamin-derived cofactors, pyridoxine for transsulfuration and both folate and cobalamin in the methionine cycle. The clinical consequences of disruption of these pathways was apparent first in rare inborn errors of metabolism that cause homocystinuria, but recent studies focus on "hyperhomocysteinemia"--a lesser metabolic impairment that may result from genetic variations, acquired pathology, toxicity and nutritional inadequacy. Hyperhomocysteinemia is an independent risk factor for thrombovascular diseases however it is not clear whether the minimally increased concentration of the amino acid is the causative agent or merely a marker for the pathology. Until we resolve that question we cannot predict the potential efficacy of therapies based on folate administration with or without additional cobalamin and pyridoxine.  相似文献   

11.

Background

Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism. The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity.

Results

Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production of adi1 mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect, in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply rescued the fecundity defect in Dadi1 mutant flies. The detailed analysis of Dadi1 mutant ovaries revealed a dramatic change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM and Methionine sulfoxide, respectively, may be required for normal fecundity.

Conclusions

In summary, these results suggest that ADI1, an MTA cycle enzyme, affects fly fecundity through the regulation of methionine metabolism.  相似文献   

12.
A gas chromatographic–mass spectrometric method for the simultaneous determination of methionine and total homocysteine in human plasma is described. dl-[2H4]Methionine and dl-[2H8]homocystine were used as internal standards. The method involved reduction of the disulfide bond with dithiothreitol, purification by cation-exchange chromatography using a BondElut SCX cartridge and derivatization with isobutyl chlorocarbonate in water–ethanol–pyridine. Quantitation was performed by selected-ion monitoring of the quasi-molecular ions of N(O,S)-isobutyloxycarbonyl ethyl ester (IBC-OEt) derivatives for methionine and [2H4]methionine, respectively, and the fragment ions ([M+H–COOisoBu–COOEt]+) for IBC-OEt derivatives for homocysteine and [2H4]homocysteine, respectively. The sensitivity, specificity, accuracy and precision of the method were demonstrated to be satisfactory for measuring concentrations of methionine and total homocysteine in human plasma.  相似文献   

13.
Intramuscular administration of methionine to mice resulted in changes in the levels of aspartate, glutamate, glutamine, and gamma-aminobutyrate in both nerve endings (synaptosomes) and "non-nerve-ending" tissue in the brain. However, the amino acid changes in the two locations differed considerably, not only in the time to onset of the changes, but also in the direction of the changes and in their duration. The results provide additional support for a glutamate-glutamine cycle between neurons and glia, and suggest that the decreases in amino acid levels in the nerve endings are due to an insufficient supply of glutamine from glia or other cellular structures, possibly compounded by an impairment in the uptake of glutamine into the nerve terminals. The primary cause of the glutamine deficiency is unknown because methionine did not affect the enzymes of glutamate and glutamine metabolism. Treatment of mice with methionine also resulted in an anticonvulsant action, but no correlation was observed between the latter phenomenon and the glutamate content of nerve endings.  相似文献   

14.
In the present study we determined the age-related effect of methionine-enriched diet, a model of hyperhomocysteinemia, on the level of plasma homocysteine and hepatic global DNA methylation in rats. Feeding methionine diet to middle-aged rats for only 14 days resulted in a significant increase in plasma homocysteine level and DNA hypomethylation. In contrast, feeding the methionine-containing diet for 2 weeks to juvenile or post-pubertal animals did not alter the level of plasma homocysteine or hepatic DNA methylation. Supplementation of the methionine-enriched diet with vitamins B6, B12 and folic acid prevented both hepatic DNA hypomethylation and an increase of plasma homocysteine concentration in the middle-aged rats. These findings indicate that the elevated level of plasma homocysteine may be indicative of much broader and deeper alterations in intracellular methylation dysfunction, and suggest that dietary enrichment with B-vitamins is essential for the metabolism of homocysteine, especially in adult animals.  相似文献   

15.
Serine transhydroxymethylase appears to be the first enzyme in the synthesis of the methyl group of methionine. Properties of serine transhydroxymethylase activity as assayed by the production of formaldehyde were correlated with properties of cell-free extracts for the methylation of homocysteine deriving the methyl group from the beta-carbon of serine. The reaction required pyridoxal phosphate and tetrahydrofolic acid, and was characterized in cell-free extracts with respect to Michaelis constant, pH optimum, incubation time, and optimal enzyme concentration. The activity was sensitive to inhibition by methionine, and to a much greater extent by S-adenosylmethionine. Serine transhydroxymethylase and the methylation of homocysteine reactions were not repressed by methionine and were stimulated by glycine. The activities of cell-free extracts for these reactions were significantly higher in cells in exponential than in stationary growth. When cells were grown in 10 mm glycine, the activities remained high throughout the culture cycle. The data indicated that glycine rather than methionine is involved in the control of the formation of the enzyme.  相似文献   

16.
Glucosinolates are a group of sulfur-rich thioglucoside natural products common in the Brassicaceae and related plant families. The first phase in the formation of many glucosinolates involves the chain extension of the amino acid methionine. Additional methylene groups are inserted into the side chain of methionine by a three-step elongation cycle involving 2-oxo acid intermediates. This investigation demonstrated the first step of this chain elongation cycle in a partially-purified preparation from arugula (Eruca sativa). The 2-oxo acid derived from methionine, 4-methylthio-2-oxobutanoic acid, was shown to condense with acetyl-CoA to form 2-(2'-methylthioethyl)malate. The catalyst, designated as a 2-(omega-methylthioalkyl)malate synthase, belongs to a family of enzymes that mediate the condensation of acyl-CoAs with 2-oxo acids, including citrate synthase of the citric acid cycle, and 2-isopropylmalate synthase of leucine biosynthesis. The 2-(omega-methylthioalkyl)malate synthase studied here shares properties with other enzymes of this class, but appears chromatographically distinct and is found only in extracts of plant species producing glucosinolates from chain-elongated methionine derivatives. Although the principal glucosinolates of arugula are formed from methionine that has undergone two rounds of chain elongation to form dihomomethionine, studies with substrates and substrate analogs of different chain lengths showed that the isolated enzyme is responsible only for the condensation step of the first round of elongation.  相似文献   

17.
The major class of glucosinolates in Arabidopsis thaliana (L.) Heynh. are biosynthesized from methionine involving a three-step chain-elongation cycle. Each passage through the cycle results in the net addition of a single methylene group, with up to six cycles of elongation occurring in A. thaliana. The first reaction of the cycle is catalyzed by a methylthioalkylmalate synthase (MAMS), which condenses a -methylthio-2-oxoalkanoic acid with acetyl-CoA. Here we have demonstrated that MAM1, one of two similar genes in the A. thaliana ecotype Columbia, encodes a MAMS catalyzing the condensing reactions of the first two elongation cycles but not those of further cycles. The Columbia ecotype is dominated by compounds that have undergone only two elongation cycles. The A. thaliana MAM1 protein exhibits basic sequence similarity to other previously described enzymes catalyzing the condensation of 2-oxo acids and acetyl-CoA, such as isopropylmalate synthase (EC 2.3.3.13), an enzyme of leucine biosynthesis, and homocitrate synthase (EC 2.3.3.14). It also shares similar properties with them, including the catalytic requirements for a divalent metal ion and an adenine nucleotide. However, the MAM1 protein does not show activity with the substrates of any of these other enzymes, and was chromatographically separable from isopropylmalate synthase in extracts of A. thaliana. Thus, MAM1 is exclusively an enzyme of secondary metabolism, distinct from primary metabolic enzymes catalyzing similar reactions.Abbreviations IPMS Isopropylmalate synthase - MAM Methylthioalkylmalate - MAMS Methylthioalkylmalate synthase  相似文献   

18.
In vivo studies have shown that, in the absence of homoserine-O-transacetylase activity (locus met(2)), the C(4)-carbon moiety of ethionine is utilized (provided the ethionine resistance gene eth-2r is present) by methionine auxotrophs, except for met(8) mutants (homocysteine synthetase-deficient). Concomitant utilization of sulfur and methyl group from methylmercaptan or S-methylcysteine has been demonstrated. In the absence of added methylated intermediates, the methyl group of methionine formed from ethionine is derived from serine. In vitro studies with crude extracts of Saccharomyces cerevisiae have demonstrated that this synthesis of methionine occurs by the following reactions: CH(3)-SH + ethionine right harpoon over left harpoon methionine + C(2)H(5)SH and S-methylcysteine + ethionine right harpoon over left harpoon methionine + S-ethylcysteine. In the forward direction, the second product of the second reaction was shown to be S-ethylcysteine; this reaction has also been found reversible, leading to ethionine formation. Genetic and kinetic data have shown that homocysteine synthetase catalyzes these two reactions, at 0.3% of the rate it catalyzes direct homocysteine synthesis: O-Ac-homoserine + Na(2)S --> homocysteine + acetate. The three reactions are lost together in a met(8) mutant and are recovered to the same extent in spontaneous prototrophic revertants from this strain. Methionine-mediated regulation of enzyme synthesis affects the three activities and is modified to the same extent by the presence of the recessive allele (eth-2r) of the regulatory gene eth-2. Affinities of the enzyme for substrates of both types of reactions are of the same order of magnitude. Moreover, ethionine, the substrate of the second reaction, inhibits the third reaction, whereas O-acetyl-homoserine, the substrate of the third reaction, inhibits the second reaction. An enzymatic cleavage of S-methylcysteine, leading to methylmercaptan production, has been shown to occur in crude yeast extracts. It is concluded that the enzyme homocysteine synthetase participates in the two alternate pathways leading to methionine biosynthesis in S. cerevisiae, one involving O-acetyl-homoserine and H(2)S, the other involving the 4-carbon chain of ethionine and a mercaptyl donor. Participation of the two types of reactions catalyzed by homocysteine synthetase, in in vivo methionine synthesis, has been shown to occur in a met(2) partial revertant.  相似文献   

19.
It is known that Escherichia coli methionine mutants can grow on both enantiomers of methionine sulfoxide (met(o)), i.e., met-R-(o) or met-S-(o), indicating the presence of enzymes in E. coli that can reduce each of these enantiomers to methionine (met). Previous studies have identified two members of the methionine sulfoxide reductase (Msr) family of enzymes, MsrA and fSMsr, that could reduce free met-S-(o), but the reduction of free met-R-(o) to met has not been elucidated. One possible candidate is MsrB which is known to reduce met-R-(o) in proteins to met. However, free met-R-(o) is a very poor substrate for MsrB and the level of MsrB activity in E. coli extracts is very low. A new member of the Msr family (fRMsr) has been identified in E. coli extracts that reduces free met-R-(o) to met. Partial purification of FRMsr has been obtained using extracts from an MsrA/MsrB double mutant of E. coli.  相似文献   

20.
The effect of dietary supplementation with cysteine on the plasma homocysteine concentration was investigated in rats fed on 10% casein (10C) and 30% casein (30C) diets. The 10C diet significantly increased the plasma homocysteine concentration as compared with the 30C diet. The hyperhomocysteinemia induced by the 10C diet was significantly suppressed by cysteine supplementation even at a 0.3% level, whereas cysteine did not decrease the plasma homocysteine concentration when added to the 30C diet. In contrast, 0.3% methionine supplementation of the 10C diet tended to increase the plasma homocysteine concentration. Cysteine supplementation to rats fed on the 10C diet did not alter the plasma cysteine concentration and the hepatic activities of cystathionine beta-synthase and betaine:homocysteine S-methyltransferase, whereas it significantly decreased the hepatic concentrations of S-adenosylmethionine and betaine. These results suggest that cysteine supplementation might be effective for suppressing the hyperhomocysteinemia induced by a low-protein diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号