首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental and theoretical calculations indicate that the dipole moment of the four Trp side chains in gramicidin A (gA) channels modify channel conductance through long-range electrostatic interactions. Electrostatic ion/side-chain interaction energies along the channel were computed with CHARMM using ab initio atom charges for native and 4-, 5-, or 6-fluorinated Trp side chains. The bulk water reaction to the polar side chains was included using the method of images as implemented by, and channel waters in idealized structures were included. Ion/Trp interaction energies were approximately -0.6 kcal/mol throughout the channel for all four of the native Trp pairs. Channel waters produced a modest reduction in the magnitude of interactions, essentially offsetting images representing the bulk water outside the channel. The effects of side-chain fluorination depended on ring position and, to a lesser extent, residue number. Compared with native Trp, 5-fluorination reduces the translocation barrier with minor effects on the exit barrier. In contrast, 6-fluorination primarily reduces exit barrier. 4-Fluorination produces a more complex double-well energy profile. Effects of measured side-chain movements resulting from fluorination or change in lipid bilayer were negligible whereas thermal side chain librations cause large effects, especially in the region of the ion-binding sites.  相似文献   

2.
A model based on the solution of the electrostatic potential for a geometry of three dielectric regions associated with a gramicidin A channel (GA) is presented. The model includes a cylindrical dielectric layer to represent the peptide backbone and dipole rings to account for dipolar side chains. Image potential and dipolar contributions for different orientations and positions along the channel are analyzed. The conductance of GA and two analogues obtained by substituting the amino acid at position 1 are studied. The numerical simulation reproduces experimental results (Barrett et al. 1986, Biophys J 49, 673–686) and supports the idea that electrostatic dipole-ion interactions are of primary importance in gramicidin channel function. Correspondence to: G. Martinez  相似文献   

3.
The ion permeability of transmembrane channels formed by the linear gramicidins is altered by amino acid sequence substitutions. We have previously shown that the polarity of the side chain at position one is important in modulating a channel's conductance and ion selectivity [Russel et al. (1986) Biophys. J. 49, 673-686]. Changes in polarity could alter ion permeability by (through-space) ion-dipole interactions or by (through-bond) inductive electron shifts. We have addressed this question by investigating the permeability characteristics of channels formed by gramicidins where the NH2-terminal amino acid is either phenylalanine or one of a series of substituted phenylalanines: p-hydroxy-, p-methoxy-, o-fluoro-, m-fluoro-, or p-fluorophenylalanine. The electron-donating or -withdrawing nature, as quantified by the Hammett constant, ranges from -0.37 to +0.34 for these side chains. Channels formed by these gramicidins show a more than 2.5-fold variation in their Na+ conductance, but the conductance variations do not rank in the order of the Hammett constants of the side chains. Inductive effects cannot therefore be of primary importance in the modulation of the gramicidin single-channel conductance by these side chains. The results support previous suggestions that electrostatic interactions between side chain dipoles and permeating ions can modify the energy profile for ion movement through the gramicidin channel and thus alter the conductance.  相似文献   

4.
The four Trp dipoles in the gramicidin A (gA) channel modulate channel conductance, and their side chain conformations should therefore be important, but the energies of different conformations are unknown. A conformational search for the right-handed helix based on molecular mechanics in vacuo yielded 46 conformations within 20 kcal/mol of the lowest energy conformation. The two lowest energy conformations correspond to the solid-state and solution-state NMR conformations, suggesting that interactions within the peptide determine the conformation. For representative conformations, the electrostatic potential of the Trp side chains on the channel axis was computed. A novel application of the image-series method of. Biophys. J. 9:1160-1170) was introduced to simulate the polarization of bulk water by the Trp side chains. For the experimentally observed structures, the CHARm toph19 potential energy (PE) of a cation in the channel center is -1.65 kcal/mol without images. With images, the PE is -1.9 kcal/mol, demonstrating that the images further enhance the direct dipole effect. Nonstandard conformations yielded less favorable PEs by 0.4-1.1 kcal/mol.  相似文献   

5.
A shortened analog of gramicidin A has been shown by Urry et al. (Biochim. Biophys. Acta 775, 115-119) to have lower conductance than native gramicidin A. They argue this suggests that the major current carrier is the doubly occupied channel. A different perspective is presented here. Channel formation does not alter bilayer width. In a shortened channel an ion approaching the binding site moves further toward the center of the lipid-pore system. The electrostatic contribution to the energy barrier near the constriction mouth is greater for the shorter channel. As long as entry to the channel is rate limiting singly occupied short channels should exhibit lower conductance. The data are not inconsistent with singly occupied channels being the major current carriers. Experiments on other gramicidin analogs are suggested to more clearly distinguish between singly and doubly occupied channels as the dominant conducting species.  相似文献   

6.
Using an electrostatic model for the pore and membrane region in a gramicidinlike channel, the effect of dipoles located inside the membrane on the ion transport are analyzed. Calculated energy profiles for different orientations of dipoles show a predominant influence of their radial components. The results qualitatively agree with experimental measurements of conductance on different modified gramicidins and allow to understand the important role of polar side chains on ion permeation.  相似文献   

7.
Gu H  Lum K  Kim JH  Greathouse DV  Andersen OS  Koeppe RE 《Biochemistry》2011,50(22):4855-4866
We investigated the effects of substituting two of the four tryptophans (the "inner pair" Trp(9) and Trp(11) or the "outer pair" Trp(13) and Trp(15)) in gramicidin A (gA) channels. The conformational preferences of the doubly substituted gA analogues were assessed using circular dichroism spectroscopy and size-exclusion chromatography, which show that the inner tryptophans 9 and 11 are critical for the gA's conformational preference in lipid bilayer membranes. [Phe(13,15)]gA largely retains the single-stranded helical channel structure, whereas [Phe(9,11)]gA exists primarily as double-stranded conformers. Within this context, the (2)H NMR spectra from labeled tryptophans were used to examine the changes in average indole ring orientations, induced by the Phe substitutions and by the shift in conformational preference. Using a method for deuterium labeling of already synthesized gAs, we introduced deuterium selectively onto positions C2 and C5 of the remaining tryptophan indole rings in the substituted gA analogues for solid-state (2)H NMR spectroscopy. The (least possible) changes in orientation and overall motion of each indole ring were estimated from the experimental spectra. Regardless of the mixture of backbone folds, the indole ring orientations observed in the analogues are similar to those found previously for gA channels. Both Phe-substituted analogues form single-stranded channels, as judged from the formation of heterodimeric channels with the native gA. [Phe(13,15)]gA channels have Na(+) currents that are ~50% and lifetimes that are ~80% of those of native gA channels. The double-stranded conformer(s) of [Phe(9,11)]gA do not form detectable channels. The minor single-stranded population of [Phe(9,11)]gA forms channels with Na(+) currents that are ~25% and single-channel lifetimes that are ~300% of those of native gA channels. Our results suggest that Trp(9) and Trp(11), when "reaching" for the interface, tend to drive both monomer folding (to "open" a channel) and dimer dissociation (to "close" a channel). Furthermore, the dipoles of Trp(9) and Trp(11) are relatively more important for the single-channel conductance than are the dipoles of Trp(13) and Trp(15).  相似文献   

8.
To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.  相似文献   

9.
The relation between chemical structure and permeability characteristics of transmembrane channels has been investigated with the linear gramicidins (A, B, and C), where the amino acid at position 1 was chemically replaced by phenylalanine, tryptophane or tyrosine. The purity of most of the compounds was estimated to be greater than 99.99%. The modifications resulted in a wide range of conductance changes in NaCl solutions: sixfold from tryptophane gramicidin A to tyrosine gramicidin B. The conductance changes induced by a given amino acid substitution at position 1 are not the same as at position 11. The only important change in the Na+ affinity was observed when the first amino acid was tyrosine. No major conformational changes of the polypeptide backbone structure could be detected on the basis of experiments with mixtures of different analogues and valine gramicidin A (except possibly with tyrosine at position 1), as all the compounds investigated could form hybrid channels with valine gramicidin A. The side chains are not in direct contact with the permeating ions. The results were therefore interpreted in terms of modifications of the energy profile for ion movement through the channel, possibly due to an electrostatic interaction between the dipoles of the side chains and ions in the channel.  相似文献   

10.
We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.  相似文献   

11.
M Cotten  F Xu    T A Cross 《Biophysical journal》1997,73(2):614-623
The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramicidin A, is not compatible with ion conductance. Gramicidin A/gramicidin M hybrid structures have also been prepared, and like gramicidin M homodimers, these dimeric hybrids appear to have a double-helical fold, suggesting that a couple of indoles are being buried in the bilayer interstices. To achieve this equilibrium structure (i.e., minimum energy conformation), incubation at 68 degrees C for 2 days is required. Kinetically trapped metastable structures may be more common in lipid bilayers than in an aqueous isotropic environment. Structural characterizations in the bilayers were achieved with solid-state NMR-derived orientational constraints from uniformly aligned lipid bilayer samples, and characterizations in organic solvents were accomplished by solution NMR.  相似文献   

12.
We reinvestigate the dipolar chain model for an ion channel. Our goal is to account for the influence that ion-induced electrostriction of channel water has on the translocational energy barriers experienced by different ions in the channel. For this purpose, we refine our former model by relaxing the positional constraint on the ion and the water dipoles and by including Lennard-Jones contributions in addition to the electrostatic interactions. The positions of the ion and the waters are established by minimization of the free energy. As before, interaction with the external medium is described via the image forces. Application to alkali cations show that the short range interactions modulate the free energy profiles leading to a selectivity sequence for translocation. We study the influence of some structural parameters on this sequence and compare our theoretical predictions with observed results for gramicidin.  相似文献   

13.
Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends.  相似文献   

14.
H Takeuchi  Y Nemoto  I Harada 《Biochemistry》1990,29(6):1572-1579
Raman spectroscopy has been used to investigate the hydrophobic interaction of the indole ring with the environments, the water accessibility to the N1H site, and the conformation about the C beta-C3 bond for the four tryptophan side chains of gramicidin A incorporated into phospholipid bilayers. Most of the tryptophan side chains of the head-to-head helical dimer transmembrane channel are strongly interacting with the lipid hydrocarbon chains, and the hydrophobic interactions for the rest increase with increasing hydrocarbon chain length of the lipid. One tryptophan side chain (probably Trp-15) is accessible to water molecules, another (Trp-9) is deeply buried in the bilayer and inaccessible, and the accessibilities of the remaining two (Trp-11 and Trp-13) depend on the bilayer thickness. The torsional angle about the C beta-C3 bond is found to be +/- 90 degrees for all the tryptophans irrespective of the membrane thickness. Binding of the sodium cation to the channel does not change the torsional angles but decreases the water accessibilities of two tryptophans (Trp-11 and Trp-13) considerably. In conjunction with a slight spectral change in the amide III region, it is suggested that the sodium binding causes a partial change in the main-chain conformation around Trp-11 and Trp-13, which results in the movements of these side chains toward the bilayer center. Two models consistent with the present Raman data are proposed for the tryptophan orientation in the dominant channel structure.  相似文献   

15.
Jordan JB  Shobana S  Andersen OS  Hinton JF 《Biochemistry》2006,45(47):14012-14020
Tryptophan residues often are found at the lipid-aqueous interface region of membrane-spanning proteins, including ion channels, where they are thought to be important determinants of protein structure and function. To better understand how Trp residues modulate the function of membrane-spanning channels, we have examined the effects of Trp replacements on the structure and function of gramicidin A channels. Analogues of gramicidin A in which the Trp residues at positions 9, 11, 13, and 15 were sequentially replaced with Gly were synthesized, and the three-dimensional structure of each analogue was determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. Though Trp --> Gly substitutions destabilize the beta6.3-helical gA channel structure, it is possible to determine the structure of analogues with Trp --> Gly substitutions at positions 11, 13, and 15, but not for the analogue with the Trp --> Gly substitution at position 9. The Gly11-, Gly13-, and Gly15-gA analogues form channels that adopt a backbone fold identical to that of native gramicidin A, with only small changes in the side chain conformations of the unsubstituted residues. Single-channel current measurements show that the channel function and lifetime of the analogues are significantly affected by the Trp --> Gly replacements. The conductance variations appear to be caused by sequential removal of the Trp dipoles, which alter the ion-dipole interactions that modulate ion movement. The lifetime variations did not appear to follow a clear pattern.  相似文献   

16.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

17.
The impact on the cation-transport free-energy profile of replacing the C-terminal ethanolamine in the gramicidin A channel with a taurine residue is studied using molecular dynamics simulations of gramicidin A (1JNO) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl saline solution. The potential of mean force for ion transport is obtained by umbrella sampling. The presence of a negatively charged sulfonate group at the entrance of the gramicidin channel affects the depth and the location of the binding sites, producing a strong attraction for the cations in the bulk. The potential of mean force by the sulfonate acting directly through electrostatics and van der Waals interactions on the test ion is highly modulated by indirect effects (i.e., sulfonate effects on other components of the system that, in turn, affect the ion free-energy profile in the channel). Because the “entry” sites are located symmetrically at both entry and exit of the channel, the deeper free-energy wells should inhibit exit. Given that the channel has increased conductance experimentally, the simulation results suggest that the channel conductance is normally entry limited.  相似文献   

18.
We describe an electrostatic model of the gramicidin A channel that allows protein atoms to move in response to the presence of a permeating ion. To do this, molecular dynamics simulations are carried out with a permeating ion at various positions within the channel. Then an ensemble of atomic coordinates taken from the simulations are used to construct energy profiles using macroscopic electrostatic calculations. The energy profiles constructed are compared to experimentally-determined conductance data by inserting them into Brownian dynamics simulations. We find that the energy landscape seen by a permeating ion changes significantly when we allow the protein atoms to move rather than using a rigid protein structure. However, the model developed cannot satisfactorily reproduce all of the experimental data. Thus, even when protein atoms are allowed to move, the dielectric model used in our electrostatic calculations breaks down when modeling the gramicidin channel.  相似文献   

19.
Proton transport on water wires, of interest for many problems in membrane biology, is analyzed in side-chain analogs of gramicidin A channels. In symmetrical 0.1 N HCl solutions, fluorination of channel Trp(11), Trp-(13), or Trp(15) side chains is found to inhibit proton transport, and replacement of one or more Trps with Phe enhances proton transport, the opposite of the effects on K(+) transport in lecithin bilayers. The current-voltage relations are superlinear, indicating that some membrane field-dependent process is rate limiting. The interfacial dipole effects are usually assumed to affect the rate of cation translocation across the channel. For proton conductance, however, water reorientation after proton translocation is anticipated to be rate limiting. We propose that the findings reported here are most readily interpreted as the result of dipole-dipole interactions between channel waters and polar side chains or lipid headgroups. In particular, if reorientation of the water column begins with the water nearest the channel exit, this hypothesis explains the negative impact of fluorination and the positive impact of headgroup dipole on proton conductance.  相似文献   

20.
Linear gramicidins with one, two, or three Trp----Phe substitutions in the gramicidin A sequence form beta 6.3-helical channels that have widely varying conductances and average durations. The variations in single-channel conductance and average duration are uncoupled. The single-channel conductance decreases as a monotonic function of the number of Trp----Phe substitutions, and the relative conductance decrease induced by a given Trp----Phe substitution is only weakly affected by substitutions at other positions. These results suggest that each Trp influences the conductance independently, most likely through electrostatic interactions between the Trp dipole(s) and the permeant ion (as was deduced previously for aromatic side-chain substitutions at position one [Koeppe, R. E., Mazet, J.-L., & Andersen, O. S. (1990) Biochemistry 29 (2), 512-520]). Trp----Phe substitutions exert a complex, nonadditive influence on average duration as well as the energetics of heterodimer formation. These changes are presumably due to sequence-specific differences in the channel's surface chemistry--which may be related to ability of the Trp indole NH moieties to form hydrogen bonds with the lipid backbone oxygens and/or interfacial H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号