首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.  相似文献   

2.
Lu W  Lee HK  Xiang C  Finniss S  Brodie C 《Cellular signalling》2007,19(10):2165-2173
Protein kinase C delta (PKCdelta plays a major role in the regulation of cell apoptosis and survival. PKCdelta is cleaved by caspase 3 to generate a constitutively active catalytic domain that mediates both its apoptotic and anti-apoptotic effects. The caspase cleavage site of PKCdelta in the hinge region is flanked by the two tyrosine residues, Y311 and Y332. Here, we examined the role of the phosphorylation of tyrosines 311 and 332 in the cleavage and apoptotic function of PKCdelta using the apoptotic stimuli, TRAIL and cisplatin. Tyrosine 332 was constitutively phosphorylated in the A172 and HeLa cells and was further phosphorylated by TRAIL and cisplatin. This phosphorylation was inhibited by the Src inhibitors, PP2 and SU6656, and by silencing of Src. Treatment of the A172 and HeLa cells with TRAIL induced cleavage of the WT PKCdelta and of the PKCdeltaY311F mutant, whereas a lower level of cleavage was observed in the PKCdeltaY332F mutant. Similarly, a smaller degree of cleavage of the PKCdeltaY332 mutant was observed in LNZ308 cells treated with cisplatin. Mutation of Y332F affected the apoptotic function of PKCdelta; overexpression of the PKCdeltaY332 mutant increased the apoptotic effect of TRAIL, whereas it decreased the apoptotic effect of cisplatin. Inhibition of Src decreased the cleavage of PKCdelta and modified the apoptotic responses of the cells to TRAIL and cisplatin, similar to effect of the PKCdeltaY332F mutant. These results demonstrate that the phosphorylation of tyrosine 332 by Src modulates the cleavage of PKCdelta and the sensitivity of glioma cells to TRAIL and cisplatin.  相似文献   

3.
The TNF family member TRAIL is emerging as a promising cytotoxic molecule for antitumor therapy. However, its mechanism of action and the possible modulation of its effect by the microenvironment in follicular lymphomas (FL) remain unknown. We show here that TRAIL is cytotoxic only against FL B cells and not against normal B cells, and that DR4 is the main receptor involved in the initiation of the apoptotic cascade. However, the engagement of CD40 by its ligand, mainly expressed on a specific germinal center CD4(+) T cell subpopulation, counteracts TRAIL-induced apoptosis in FL B cells. CD40 induces a rapid RNA and protein up-regulation of c-FLIP and Bcl-x(L). The induction of these antiapoptotic molecules as well as the inhibition of TRAIL-induced apoptosis by CD40 is partially abolished when NF-kappaB activity is inhibited by a selective inhibitor, BAY 117085. Thus, the antiapoptotic signaling of CD40, which interferes with TRAIL-induced apoptosis in FL B cells, involves NF-kappaB-mediated induction of c-FLIP and Bcl-x(L) which can respectively interfere with caspase 8 activation or mitochondrial-mediated apoptosis. These findings suggest that a cotreatment with TRAIL and an inhibitor of NF-kappaB signaling or a blocking anti-CD40 Ab could be of great interest in FL therapy.  相似文献   

4.
5.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) ligand family that exerts its apoptotic activity in human cells by binding to two transmembrane receptors, TRAILR1 and TRAILR2. In cells co-expressing both receptors the particular contribution of either protein to the overall cellular response is not well defined. Here we have investigated whether differences in the signaling capacities of TRAILR1 and TRAILR2 can be attributed to certain functional molecular subdomains. We generated and characterized various chimeric receptors comprising TRAIL receptor domains fused with parts from other members of the TNF death receptor family. This allowed us to compare the contribution of particular domains of the two TRAIL receptors to the overall apoptotic response and to identify elements that regulate apoptotic signaling. Our results show that the TRAIL receptor death domains are weak apoptosis inducers compared to those of CD95/Fas, because TRAILR-derived constructs containing the CD95/Fas death domain possessed strongly enhanced apoptotic capabilities. Importantly, major differences in the signaling strengths of the two TRAIL receptors were linked to their transmembrane domains in combination with the adjacent extracellular stalk regions. This was evident from receptor chimeras comprising the extracellular part of TNFR1 and the intracellular signaling part of CD95/Fas. Both receptor chimeras showed comparable ligand binding affinities and internalization kinetics. However, the respective TRAILR2-derived molecule more efficiently induced apoptosis. It also activated caspase-8 and caspase-3 more strongly and more quickly, albeit being expressed at lower levels. These results suggest that the transmembrane domains together with their adjacent stalk regions can play a major role in control of death receptor activation thereby contributing to cell type specific differences in TRAILR1 and TRAILR2 signaling.  相似文献   

6.
TRAIL is an apoptotic cell death-inducing ligand that belongs to a TNF superfamily. To identify the regulators that govern the susceptibility to TRAIL, TRAIL-resistant HeLa (TR) cells were established by repeatedly treating HeLa cells with TRAIL. Here we showed that scaffolding protein Homer1 plays a decisive role in regulating the apoptotic susceptibility to TRAIL. TR cells showing the normal susceptibility to FasL and chemotherapeutic agent etoposide expressed the lower protein levels of Homer1 than parental HeLa cells. They showed the delayed activation of caspases-8, Bid cleavage and Bax translocation to mitochondria in response to TRAIL. Reconstitution of Homer1 expression in TR cells significantly restored the susceptibility to TRAIL. In addition, knock-down of Homer1 using interfering shRNA in parental HeLa cells lost the susceptibility to TRAIL. Together, our data indicate that Homer1 plays a critical role in determining the apoptotic susceptibility to TRAIL.  相似文献   

7.
Tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), a member of the TNF family, induces apoptosis in many transformed cells. We report TRAIL-induced NF-kappaB activation, concomitant with production of the pro-inflammatory cytokine Interleukin-8 in the relatively TRAIL-insensitive cell line, HEK293. In contrast, TRAIL-induced NF-kappaB activation occurred in HeLa cells only upon pretreatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), indicating that this was due to a caspase-sensitive component of TRAIL-induced NF-kappaB activation. NF-kappaB activation was mediated by the death receptors, TRAIL-R1 and -R2, but not by TRAIL-R3 or -R4 and was only observed in HeLa cells in the presence of z-VAD.fmk. Receptor-interacting protein, an obligatory component of TNF-alpha-induced NF-kappaB activation, was cleaved during TRAIL-induced apoptosis. We show that receptor-interacting protein is recruited to the native TRAIL death-inducing signaling complex (DISC) and that recruitment is enhanced in the presence of z-VAD.fmk, thus providing an explanation for the potentiation of TRAIL-induced NF-kappaB activation by z-VAD.fmk in TRAIL-sensitive cell lines. Examination of the TRAIL DISC in sensitive and resistant cells suggests that a high ratio of c-FLIP to caspase-8 may partially explain cellular resistance to TRAIL-induced apoptosis. Sensitivity to TRAIL-induced apoptosis was also modulated by inhibition or activation of NF-kappaB. Thus, in some contexts, modulation of NF-kappaB activation possibly at the level of apical caspase activation at the DISC may be a key determinant of sensitivity to TRAIL-induced apoptosis.  相似文献   

8.
Tumor necrosis factor (TNF) can induce caspase-dependent (apoptotic) and caspase-independent pathways to programmed cell death (PCD). Here, we demonstrate that stable transfection of a cDNA encompassing the C-terminal apoptosis inhibitory domain (AID) of FE65-like protein 1 into mouse L929 fibrosarcoma cells protects from caspase-independent as well as from apoptotic PCD induced by TNF. We show that the AID does not protect from caspase-independent PCD elicited by 1-methyl-3-nitro-1-nitrosoguanidine, suggesting that the AID might prevent cell death by affecting assembly of the death inducing signaling complex of the 55 kDa TNF receptor or clustering of the receptor itself. Interference with caspase-independent PCD mediated by the sphingolipid ceramide further increases protection conferred by the AID, as does the antioxidant butylated hydroxyanisole, implicating ceramide and reactive oxygen species as potential factors interacting with caspase-independent PCD regulated by the AID.  相似文献   

9.
Clostridium difficile toxin B (TcdB) inactivates the small GTPases Rho, Rac and Cdc42 during intoxication of mammalian cells. In the current work, we show that TcdB has the potential to stimulate caspase-dependent and caspase-independent apoptosis. The apoptotic pathways became evident when caspase-3-processed-vimentin was detected in TcdB-treated HeLa cells. Caspase-3 activation was subsequently confirmed in TcdB-intoxicated HeLa cells. Interestingly, caspase inhibitor delayed TcdB-induced cell death, but did not alter the time-course of cytopathic effects. A similar effect was also observed in MCF-7 cells, which are deficient in caspase-3 activity. The time-course to cell death was almost identical between cells treated with TcdB plus caspase inhibitor and cells intoxicated with the TcdB enzymatic domain (TcdB1-556). Unlike TcdB treated cells, intoxication with TcdB1-556 or expression of TcdB1-556 in a transfected cell line, did not stimulate caspase-3 activation yet cells exhibited cytopathic effects and cell death. Although TcdB1-556 treated cells did not demonstrate caspase-3 activation these cells were apoptotic as determined by differential annexin-V/propidium iodide staining and nucleosomal DNA fragmentation. These data indicate TcdB triggers caspase-independent apoptosis as a result of substrate inactivation and may evoke caspase-dependent apoptosis due to a second, yet undefined, activity of TcdB. This is the first example of a bacterial virulence factor with the potential to stimulate multiple apoptotic pathways in host cells.  相似文献   

10.
Lee MW  Park SC  Yang YG  Yim SO  Chae HS  Bach JH  Lee HJ  Kim KY  Lee WB  Kim SS 《FEBS letters》2002,512(1-3):313-318
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells.  相似文献   

11.
Reovirus-induced apoptosis is mediated by TRAIL   总被引:20,自引:0,他引:20       下载免费PDF全文
Members of the tumor necrosis factor (TNF) receptor superfamily and their activating ligands transmit apoptotic signals in a variety of systems. We now show that the binding of TNF-related, apoptosis-inducing ligand (TRAIL) to its cellular receptors DR5 (TRAILR2) and DR4 (TRAILR1) mediates reovirus-induced apoptosis. Anti-TRAIL antibody and soluble TRAIL receptors block reovirus-induced apoptosis by preventing TRAIL-receptor binding. In addition, reovirus induces both TRAIL release and an increase in the expression of DR5 and DR4 in infected cells. Reovirus-induced apoptosis is also blocked following inhibition of the death receptor-associated, apoptosis-inducing molecules FADD (for FAS-associated death domain) and caspase 8. We propose that reovirus infection promotes apoptosis via the expression of DR5 and the release of TRAIL from infected cells. Virus-induced regulation of the TRAIL apoptotic pathway defines a novel mechanism for virus-induced apoptosis.  相似文献   

12.
MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors   总被引:16,自引:0,他引:16  
The tumor necrosis factor (TNF), Fas, and TNF-related apoptosis-inducing ligand (TRAIL) receptors (R) are highly specific physiological mediators of apoptotic signaling. We observed earlier that a number of FasR-insensitive cell lines could redirect the proapoptotic signal to an anti-apoptotic ERK1/2 signal resulting in inhibition of caspase activation. Here we determine that similar mechanisms are operational in regulating the apoptotic signaling of other death receptors. Activation of the FasR, TNF-R1, and TRAIL-R, respectively, rapidly induced subsequent ERK1/2 activation, an event independent from caspase activity. Whereas inhibition of the death receptor-mediated ERK1/2 activation was sufficient to sensitize the cells to apoptotic signaling from FasR and TRAIL-R, cells were still protected from apoptotic TNF-R1 signaling. The latter seemed to be due to the strong activation of the anti-apoptotic factor NF-kappaB, which remained inactive in FasR or TRAIL-R signaling. However, when the cells were sensitized with cycloheximide, which is sufficient to sensitize the cells also to apoptosis by TNF-R1 stimulation, we noticed that adenovirus-mediated expression of constitutively active MKK1 could rescue the cells from apoptosis induced by the respective receptors by preventing caspase-8 activation. Taken together, our results show that ERK1/2 has a dominant protecting effect over apoptotic signaling from the death receptors. This protection, which is independent of newly synthesized proteins, acts in all cases by suppressing activation of the caspase effector machinery.  相似文献   

13.
Erucylphosphocholine (ErPC) is a promising anti-neoplastic drug for the treatment of malignant brain tumours. It exerts strong anti-cancer activity in vivo and in vitro and induces apoptosis even in chemoresistant glioma cell lines. The purpose of this study was to expand on our previous observations on the potential mechanisms of ErPC-mediated apoptosis with a focus on death receptor activation and the caspase network. A172 and T98G glioma cells were treated with ErPC for up to 48 h. ErPC effects on the expression of the tumour necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) receptor system, and on caspase activation were determined. ErPC had no effect on the expression of TNFalpha or TRAIL. Inhibition of the TNF or TRAIL signalling pathway with antagonistic antibodies or fusion proteins did not affect apoptosis induced by ErPC, and a dominant-negative FADD construct did not abolish ErPC-induced effects. Western blot analysis indicated that ErPC-triggered apoptosis resulted in a time-dependent processing of caspases-3, -7, -8 and -9 into their respective active subunits. Co-treatment of A172 cells with different caspase inhibitors prevented apoptosis but did not abrogate cell death. These data suggest that A172 cells might have an additional caspase-independent pathway that insures cell death and guarantees killing of those tumour cells whose caspase pathway is incomplete.  相似文献   

14.
The HT29 adenocarcinoma is a common model of epithelial cell differentiation and colorectal cancer and its death is an oft-analyzed response to TNF family receptor signaling. The death event itself remains poorly characterized and here we have examined the involvement of caspases using pan-caspase inhibitors. zVAD-fmk did not block death of HT29 cells in response to activation of the Fas, TRAIL, TNF, TWEAK and LTbeta receptors. The secondary induction of TNF or the other known bona fide death inducing ligands did not account for death following LTbeta receptor activation indicating that TNF family receptors can trigger a caspase-independent death pathway regardless of the presence of canonical death domains in the receptor. To provide a frame of reference, the phenotype of HT29 death was compared to four other TNF family receptor triggered death events; Fas induced Jurkat cell apoptosis, TNF/zVAD induced L929 fibroblast necrosis, TNF induced death of WEHI 164 fibroblastoid cells and TNF/zVAD induced U937 death. The death of HT29 and U937 cells under these conditions is an intermediate form with both necrotic and apoptotic features. The efficient coupling of TNF receptors to a caspase-independent death event in an epithelial cell suggests an alternative approach to cancer therapy.  相似文献   

15.
Stimulation of tumor necrosis factor receptor 1 (TNF-R1) triggers both caspase-dependent and caspase-independent signaling activities. The caspase-dependent signaling pathway induces apoptotic cell death in susceptible cells, whereas the caspase-independent signaling cascade leads to activation of nuclear factor kappa B and induces antiapoptotic signaling activities. Stimulation of nuclear factor kappa B via TNF-R1 is known to activate human immunodeficiency virus (HIV) replication in infected cells. Here we show that the broad range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (ZVAD) activates HIV replication in the chronically infected T-cell line ACH-2. Virus activation was caused by a sensitization of TNF-R1 toward endogenously produced tumor necrosis factor alpha (TNF-alpha). Neutralizing anti-TNF-alpha antibodies completely abolished the virus-inducing activity of ZVAD. Treatment of cells with TNF-alpha in the presence of ZVAD caused increased expression of TNF-alpha and induced enhanced virus replication. Activation of CD95, another member of the TNF receptor family, similarly triggered HIV replication, which was further enhanced in the presence of ZVAD. Our data show that caspase inhibitors sensitize both CD95 and TNF-R1 to mediate activation of HIV in latently infected cells. Activation of HIV replication in latent virus reservoirs is currently discussed as a therapeutic strategy to achieve eradication of HIV in patients treated with antiretroviral therapy. Our results point to a novel role for caspase inhibitors as activators of virus replication in vivo.  相似文献   

16.
17.
Activation of c-Myc sensitizes cells to apoptosis induction by ligand-activated death receptors. Such sensitization to death receptors by oncogenes may well be the mechanism underlying tumor cell sensitivity to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL). The mechanism by which this c-Myc-induced sensitization occurs is unclear but could involve modulation of expression of death receptors or their ligands or potentiation of the sensitivity of mitochondria to release pro-apoptotic effectors such as holocytochrome c. Here, we show that ectopic expression of the death receptor signaling protein RIP (receptor-interactive protein) triggers apoptosis via a FAS-associated death domain protein (FADD) and caspase 8-dependent pathway. Induction of apoptosis by this intracellular activation of the death receptor signaling pathway is significantly augmented by c-Myc expression. Moreover, c-Myc expression strongly promotes the potential of RIP to induce cytochrome c release from mitochondria. This implicates the mitochondrial apoptotic pathway in this synergy, a notion confirmed by the inability of c-Myc to sensitize to RIP killing in cells lacking the obligate mitochondrial apoptotic effectors Bax and Bak. We conclude that the lethality of the RIP-activated cytosolic caspase 8 pathway is augmented by c-Myc priming mitochondria to release cytochrome c. This places the intersection of apoptotic synergy between c-Myc and death receptor signaling downstream of the death receptors.  相似文献   

18.
Death receptors such as the 55 kDa tumor necrosis factor (TNF) receptor (TNF-R55) or Fas can initiate both apoptotic (caspase-dependent) and caspase-independent routes to programmed cell death (PCD). Here, we demonstrate for the first time that the single murine receptor for (TNF)-related apoptosis-inducing ligand (mTRAIL-R2) can induce a caspase-independent form of PCD with necrosis-like features in addition to apoptosis. Analysis of morphological and cellular features of caspase-independent PCD in response to TRAIL and TNF suggests that mTRAIL-R2 and TNF-R55 elicit caspase-independent PCD through similar pathways, although without participation of cathepsins. Cells overexpressing acid ceramidase (AC), an enzyme that metabolizes the sphingolipid ceramide, show enhanced survival from TRAIL-induced caspase-independent PCD but not from apoptosis, implicating a function of ceramide as a key mediator in caspase-independent PCD (but not apoptosis) induced by mTRAIL-R2. In concert with the enhanced resistance of AC-overexpressing cells against caspase-independent PCD induced by TNF, our results suggest that ceramide acts as a common mediator of caspase-independent PCD caused by death receptors such as mTRAIL-R2 and TNF-R55.  相似文献   

19.
20.
Formation of the pro-apoptotic death-inducing signaling complex (DISC) can be initiated in cancer cells via binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its two pro-apoptotic receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Primary components of the DISC are trimerized TRAIL-R1/-R2, FADD, caspase 8 and caspase 10. The anti-apoptotic protein FLIP can also be recruited to the DISC to replace caspase 8 and form an inactive complex. Caspase 8/10 processing at the DISC triggers the caspase cascade, which eventually leads to apoptotic cell death. Besides TRAIL, TRAIL-R1- or TRAIL-R2-selective variants of TRAIL and agonistic antibodies have been designed. These ligands are of interest as anti-cancer agents since they selectively kill tumor cells. To increase tumor sensitivity to TRAIL death receptor-mediated apoptosis and to overcome drug resistance, TRAIL receptor ligands have already been combined with various therapies in preclinical models. In this review, we discuss factors influencing the initial steps of the TRAIL apoptosis signaling pathway, focusing on mechanisms modulating DISC assembly and caspase activation at the DISC. These insights will direct rational design of drug combinations with TRAIL receptor ligands to maximize DISC signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号